About Anaconda Help Download Anaconda

r_test / packages

Package Name Access Summary Updated
r-strip public The strip function deletes components of R model outputs that are useless for specific purposes, such as predict[ing], print[ing], summary[izing], etc. 2023-06-16
r-stressstrength public Reliability of (normal) stress-strength models and for building two-sided or one-sided confidence intervals according to different approximate procedures. 2023-06-16
r-streammetabolism public I provide functions to calculate Gross Primary Productivity, Net Ecosystem Production, and Ecosystem Respiration from single station diurnal Oxygen curves. 2023-06-16
r-statprograms public A small collection of data on graduate statistics programs from the United States. 2023-06-16
r-stand public Provides functions for the analysis of occupational and environmental data with non-detects. Maximum likelihood (ML) methods for censored log-normal data and non-parametric methods based on the product limit estimate (PLE) for left censored data are used to calculate all of the statistics recommended by the American Industrial Hygiene Association (AIHA) for the complete data case. Functions for the analysis of complete samples using exact methods are also provided for the lognormal model. Revised from 2007-11-05 'survfit~1'. 2023-06-16
r-sss public Tools to import survey files in the .sss (triple-s) format. The package provides the function read.sss() that reads the .asc (or .csv) and .sss files of a triple-s survey data file. 2023-06-16
r-sscor public Provides the spatial sign correlation and the two-stage spatial sign correlation as well as a one-sample test for the correlation coefficient. 2023-06-16
r-srcs public Implementation of the SRCS method for a color-based visualization of the results of multiple pairwise tests on a large number of problem configurations, proposed in: I.G. del Amo, D.A. Pelta. SRCS: a technique for comparing multiple algorithms under several factors in dynamic optimization problems. In: E. Alba, A. Nakib, P. Siarry (Eds.), Metaheuristics for Dynamic Optimization. Series: Studies in Computational Intelligence 433, Springer, Berlin/Heidelberg, 2012. 2023-06-16
r-fishmod public Fits models to catch and effort data. Single-species models are 1) delta log-normal, 2) Tweedie, or 3) Poisson-gamma (G)LMs. 2023-06-16
r-fingerprint public Functions to manipulate binary fingerprints of arbitrary length. A fingerprint is represented by an object of S4 class 'fingerprint' which is internally represented a vector of integers, such that each element represents the position in the fingerprint that is set to 1. The bitwise logical functions in R are overridden so that they can be used directly with 'fingerprint' objects. A number of distance metrics are also available (many contributed by Michael Fadock). Fingerprints can be converted to Euclidean vectors (i.e., points on the unit hypersphere) and can also be folded using OR. Arbitrary fingerprint formats can be handled via line handlers. Currently handlers are provided for CDK, MOE and BCI fingerprint data. 2023-06-16
r-fastrweb public Infrastrcture for creating rich, dynamic web content using R scripts while maintaining very fast response time. 2023-06-16
r-fasterize public Provides a drop-in replacement for rasterize() from the 'raster' package that takes 'sf'-type objects, and is much faster. There is support for the main options provided by the rasterize() function, including setting the field used and background value, and options for aggregating multi-layer rasters. Uses the scan line algorithm attributed to Wylie et al. (1967) <doi:10.1145/1465611.1465619>. 2023-06-16
r-fasteraster public If there is a need to recognise edges on a raster image or a bitmap or any kind of a matrix, one can find packages that does only 90 degrees vectorization. Typically the nature of artefact images is linear and can be vectorized in much more efficient way than draw a series of 90 degrees lines. The fasteraster package does recognition of lines using only one pass. It also allows to calculate mass and the mass centers for the recognized zones or polygons. 2023-06-16
r-fastcox public We implement a cocktail algorithm, a good mixture of coordinate decent, the majorization-minimization principle and the strong rule, for computing the solution paths of the elastic net penalized Cox's proportional hazards model. The package is an implementation of Yang, Y. and Zou, H. (2013) DOI: <doi:10.4310/SII.2013.v6.n2.a1>. 2023-06-16
r-fastbandchol public Fast and numerically stable estimation of a covariance matrix by banding the Cholesky factor using a modified Gram-Schmidt algorithm implemented in RcppArmadilo. See <http://stat.umn.edu/~molst029> for details on the algorithm. 2023-06-16
r-factorqr public Package to fit Bayesian quantile regression models that assume a factor structure for at least part of the design matrix. 2023-06-16
r-fastcmprsk public In competing risks regression, the proportional subdistribution hazards (PSH) model is popular for its direct assessment of covariate effects on the cumulative incidence function. This package allows for both penalized and unpenalized PSH regression in linear time using a novel forward-backward scan. Penalties include Ridge, Lease Absolute Shrinkage and Selection Operator (LASSO), Smoothly Clipped Absolute Deviation (SCAD), Minimax Concave Plus (MCP), and elastic net. 2023-06-16
r-fastcmh public A method which uses the Cochran-Mantel-Haenszel test with significant pattern mining to detect intervals in binary genotype data which are significantly associated with a particular phenotype, while accounting for categorical covariates. 2023-06-16
r-fixest public Fast and user-friendly estimation of econometric models with multiple fixed-effects. Includes ordinary least squares (OLS), generalized linear models (GLM) and the negative binomial. The core of the package is based on optimized parallel C++ code, scaling especially well for large data sets. The method to obtain the fixed-effects coefficients is based on Berge (2018) <https://wwwen.uni.lu/content/download/110162/1299525/file/2018_13>. Further provides tools to export and view the results of several estimations with intuitive design to cluster the standard-errors. 2023-06-16
r-fbfsearch public We propose an objective Bayesian algorithm for searching the space of Gaussian directed acyclic graph (DAG) models. The algorithm proposed makes use of moment fractional Bayes factors (MFBF) and thus it is suitable for learning sparse graph. The algorithm is implemented by using Armadillo: an open-source C++ linear algebra library. 2023-06-16
r-fasttextr public An interface to the 'fastText' library <https://github.com/facebookresearch/fastText>. The package can be used for text classification and to learn word vectors. The install folder contains the 'PATENTS' file. An example how to use 'fastTextR' can be found in the 'README' file. 2023-06-16
r-falconx public This is a method for Allele-specific DNA Copy Number profiling for whole-Exome sequencing data. Given the allele-specific coverage and site biases at the variant loci, this program segments the genome into regions of homogeneous allele-specific copy number. It requires, as input, the read counts for each variant allele in a pair of case and control samples, as well as the site biases. For detection of somatic mutations, the case and control samples can be the tumor and normal sample from the same individual. The implemented method is based on the paper: Chen, H., Jiang, Y., Maxwell, K., Nathanson, K. and Zhang, N. (under review). Allele-specific copy number estimation by whole Exome sequencing. 2023-06-16
r-ezglm public This package implements a simplified version of least squares, and logistic regression for efficiently selecting the significant non-additive interactions between two variables. 2023-06-16
r-ssh.utils public This package provides utility functions for system command execution, both locally and remotely using ssh/scp. The command output is captured and provided to the caller. This functionality is intended to streamline calling shell commands from R, retrieving and using their output, while instrumenting the calls with appropriate error handling. NOTE: this first version is limited to unix with local and remote systems running bash as the default shell. 2023-06-16
r-flamingos public Provides a variety of original and flexible user-friendly statistical latent variable models for the simultaneous clustering and segmentation of heterogeneous functional data (i.e time series, or more generally longitudinal data, fitted by unsupervised algorithms, including EM algorithms. Functional Latent Data Models for Clustering heterogeneous curves ('FLaMingos') are originally introduced and written in 'Matlab' by Faicel Chamroukhi <https://github.com/fchamroukhi?utf8=?&tab=repositories&q=mix&type=public&language=matlab>. The references are mainly the following ones. Chamroukhi F. (2010) <https://chamroukhi.com/FChamroukhi-PhD.pdf>. Chamroukhi F., Same A., Govaert, G. and Aknin P. (2010) <doi:10.1016/j.neucom.2009.12.023>. Chamroukhi F., Same A., Aknin P. and Govaert G. (2011). <doi:10.1109/IJCNN.2011.6033590>. Same A., Chamroukhi F., Govaert G. and Aknin, P. (2011) <doi:10.1007/s11634-011-0096-5>. Chamroukhi F., and Glotin H. (2012) <doi:10.1109/IJCNN.2012.6252818>. Chamroukhi F., Glotin H. and Same A. (2013) <doi:10.1016/j.neucom.2012.10.030>. Chamroukhi F. (2015) <https://chamroukhi.com/FChamroukhi-HDR.pdf>. Chamroukhi F. and Nguyen H-D. (2019) <doi:10.1002/widm.1298>. 2023-06-16
r-fdamixed public Likelihood based analysis of 1-dimension functional data in a mixed-effects model framework. Matrix computation are approximated by semi-explicit operator equivalents with linear computational complexity. Markussen (2013) <doi:10.3150/11-BEJ389>. 2023-06-16
r-fanc public Computes the penalized maximum likelihood estimates of factor loadings and unique variances for various tuning parameters. The pathwise coordinate descent along with EM algorithm is used. This package also includes a new graphical tool which outputs path diagram, goodness-of-fit indices and model selection criteria for each regularization parameter. The user can change the regularization parameter by manipulating scrollbars, which is helpful to find a suitable value of regularization parameter. 2023-06-16
r-extweibquant public It implements the subjectively censored Weibull MLE and censored Weibull mixture methods for the lower quantile estimation. Quantile estimates from these two methods are robust to model misspecification in the lower tail. It also includes functions to evaluation the standard error of the resulting quantile estimates. Also, the methods here can be used to fit the Weibull or Weibull mixture for the Type-I or Type-II right censored data. 2023-06-16
r-fclust public Algorithms for fuzzy clustering, cluster validity indices and plots for cluster validity and visualizing fuzzy clustering results. 2023-06-16
r-fastclime public Provides a method of recovering the precision matrix efficiently and solving for the dantzig selector by applying the parametric simplex method. The computation is based on a linear optimization solver. It also contains a generic LP solver and a parameterized LP solver using parametric simplex method. 2023-06-16
r-filehash public Implements a simple key-value style database where character string keys are associated with data values that are stored on the disk. A simple interface is provided for inserting, retrieving, and deleting data from the database. Utilities are provided that allow 'filehash' databases to be treated much like environments and lists are already used in R. These utilities are provided to encourage interactive and exploratory analysis on large datasets. Three different file formats for representing the database are currently available and new formats can easily be incorporated by third parties for use in the 'filehash' framework. 2023-06-16
r-ffstream public An implementation of the adaptive forgetting factor scheme described in Bodenham and Adams (2016) <doi:10.1007/s11222-016-9684-8> which adaptively estimates the mean and variance of a stream in order to detect multiple changepoints in streaming data. The implementation is in C++ and uses Rcpp. Additionally, implementations of the fixed forgetting factor scheme from the same paper, as well as the classic CUSUM and EWMA methods, are included. 2023-06-16
r-fastmap public Fast implementation of a key-value store. Environments are commonly used as key-value stores, but every time a new key is used, it is added to R's global symbol table, causing a small amount of memory leakage. This can be problematic in cases where many different keys are used. Fastmap avoids this memory leak issue by implementing the map using data structures in C++. 2023-06-16
r-fastjt public This 'Rcpp'-based package implements highly efficient functions for the calculation of the Jonckheere-Terpstra statistic. It can be used for a variety of applications, including feature selection in machine learning problems, or to conduct genome-wide association studies (GWAS) with multiple quantitative phenotypes. The code leverages 'OpenMP' directives for multi-core computing to reduce overall processing time. 2023-06-16
r-fastcluster public This is a two-in-one package which provides interfaces to both R and 'Python'. It implements fast hierarchical, agglomerative clustering routines. Part of the functionality is designed as drop-in replacement for existing routines: linkage() in the 'SciPy' package 'scipy.cluster.hierarchy', hclust() in R's 'stats' package, and the 'flashClust' package. It provides the same functionality with the benefit of a much faster implementation. Moreover, there are memory-saving routines for clustering of vector data, which go beyond what the existing packages provide. For information on how to install the 'Python' files, see the file INSTALL in the source distribution. Based on the present package, Christoph Dalitz also wrote a pure 'C++' interface to 'fastcluster': <http://informatik.hsnr.de/~dalitz/data/hclust>. 2023-06-16
r-fastadaboost public Implements Adaboost based on C++ backend code. This is blazingly fast and especially useful for large, in memory data sets. The package uses decision trees as weak classifiers. Once the classifiers have been trained, they can be used to predict new data. Currently, we support only binary classification tasks. The package implements the Adaboost.M1 algorithm and the real Adaboost(SAMME.R) algorithm. 2023-06-16
r-far public Modelizations and previsions functions for Functional AutoRegressive processes using nonparametric methods: functional kernel, estimation of the covariance operator in a subspace, ... 2023-06-16
r-expperm public A set of functions for computing expected permutation matrices given a matrix of likelihoods for each individual assignment. It has been written to accompany the forthcoming paper 'Computing expectations and marginal likelihoods for permutations'. Publication details will be updated as soon as they are finalized. 2023-06-16
r-ff public The ff package provides data structures that are stored on disk but behave (almost) as if they were in RAM by transparently mapping only a section (pagesize) in main memory - the effective virtual memory consumption per ff object. ff supports R's standard atomic data types 'double', 'logical', 'raw' and 'integer' and non-standard atomic types boolean (1 bit), quad (2 bit unsigned), nibble (4 bit unsigned), byte (1 byte signed with NAs), ubyte (1 byte unsigned), short (2 byte signed with NAs), ushort (2 byte unsigned), single (4 byte float with NAs). For example 'quad' allows efficient storage of genomic data as an 'A','T','G','C' factor. The unsigned types support 'circular' arithmetic. There is also support for close-to-atomic types 'factor', 'ordered', 'POSIXct', 'Date' and custom close-to-atomic types. ff not only has native C-support for vectors, matrices and arrays with flexible dimorder (major column-order, major row-order and generalizations for arrays). There is also a ffdf class not unlike data.frames and import/export filters for csv files. ff objects store raw data in binary flat files in native encoding, and complement this with metadata stored in R as physical and virtual attributes. ff objects have well-defined hybrid copying semantics, which gives rise to certain performance improvements through virtualization. ff objects can be stored and reopened across R sessions. ff files can be shared by multiple ff R objects (using different data en/de-coding schemes) in the same process or from multiple R processes to exploit parallelism. A wide choice of finalizer options allows to work with 'permanent' files as well as creating/removing 'temporary' ff files completely transparent to the user. On certain OS/Filesystem combinations, creating the ff files works without notable delay thanks to using sparse file allocation. Several access optimization techniques such as Hybrid Index Preprocessing and Virtualization are implemented to achieve good performance even with large datasets, for example virtual matrix transpose without touching a single byte on disk. Further, to reduce disk I/O, 'logicals' and non-standard data types get stored native and compact on binary flat files i.e. logicals take up exactly 2 bits to represent TRUE, FALSE and NA. Beyond basic access functions, the ff package also provides compatibility functions that facilitate writing code for ff and ram objects and support for batch processing on ff objects (e.g. as.ram, as.ff, ffapply). ff interfaces closely with functionality from package 'bit': chunked looping, fast bit operations and coercions between different objects that can store subscript information ('bit', 'bitwhich', ff 'boolean', ri range index, hi hybrid index). This allows to work interactively with selections of large datasets and quickly modify selection criteria. Further high-performance enhancements can be made available upon request. 2023-06-16
r-fechner public Functions and example datasets for Fechnerian scaling of discrete object sets. User can compute Fechnerian distances among objects representing subjective dissimilarities, and other related information. See package?fechner for an overview. 2023-06-16
r-extremis public Conducts inference in statistical models for extreme values (de Carvalho et al (2012), <doi:10.1080/03610926.2012.709905>; de Carvalho and Davison (2014), <10.1080/01621459.2013.872651>; Einmahl et al (2016), <doi:10.1111/rssb.12099>). 2023-06-16
r-fasterelasticnet public Fit Elastic Net, Lasso, and Ridge regression and do cross-validation in a fast way. We build the algorithm based on Least Angle Regression by Bradley Efron, Trevor Hastie, Iain Johnstone, etc. (2004)(<doi:10.1214/009053604000000067 >) and some algorithms like Givens rotation and Forward/Back Substitution. In this way, many matrices to be computed are retained as triangular matrices which can eventually speed up the computation. The fitting algorithm for Elastic Net is written in C++ using Armadillo linear algebra library. 2023-06-16
r-extradistr public Density, distribution function, quantile function and random generation for a number of univariate and multivariate distributions. This package implements the following distributions: Bernoulli, beta-binomial, beta-negative binomial, beta prime, Bhattacharjee, Birnbaum-Saunders, bivariate normal, bivariate Poisson, categorical, Dirichlet, Dirichlet-multinomial, discrete gamma, discrete Laplace, discrete normal, discrete uniform, discrete Weibull, Frechet, gamma-Poisson, generalized extreme value, Gompertz, generalized Pareto, Gumbel, half-Cauchy, half-normal, half-t, Huber density, inverse chi-squared, inverse-gamma, Kumaraswamy, Laplace, location-scale t, logarithmic, Lomax, multivariate hypergeometric, multinomial, negative hypergeometric, non-standard beta, normal mixture, Poisson mixture, Pareto, power, reparametrized beta, Rayleigh, shifted Gompertz, Skellam, slash, triangular, truncated binomial, truncated normal, truncated Poisson, Tukey lambda, Wald, zero-inflated binomial, zero-inflated negative binomial, zero-inflated Poisson. 2023-06-16
r-fastsom public Functions for computing spillover measures, especially spillover tables and spillover indices, as well as their average, minimal, and maximal values. 2023-06-16
r-farver public The encoding of colour can be handled in many different ways, using different colour spaces. As different colour spaces have different uses, efficient conversion between these representations are important. The 'farver' package provides a set of functions that gives access to very fast colour space conversion and comparisons implemented in C++, and offers 100-fold speed improvements over the 'convertColor' function in the 'grDevices' package. 2023-06-16
r-fhdi public Impute general multivariate missing data with the fractional hot deck imputation based on Jaekwang Kim (2011) <doi:10.1093/biomet/asq073>. 2023-06-16
r-fgsg public Implement algorithms for feature grouping and selection over an undirected graph, solves problems like graph fused lasso, graph OSCAR and so on. 2023-06-16
r-farmtest public Performs robust multiple testing for means in the presence of known and unknown latent factors. It implements a robust procedure to estimate distribution parameters using the Huber's loss function and accounts for strong dependence among coordinates via an approximate factor model. This method is particularly suitable for high dimensional data when there are many variables but only a small number of observations available. Moreover, the method is tailored to cases when the underlying distribution deviates from Gaussian, which is commonly assumed in the literature. Besides the results of hypotheses testing, the estimated underlying factors and diagnostic plots are also output. Multiple comparison correction is done after estimating the proportion of true null hypotheses using the method in Storey (2015) <https://github.com/jdstorey/qvalue>. For detailed description of methods and further references, see the papers on the 'FarmTest' method: Fan et al. (2017) <arXiv:1711.05386> and Zhou et al. (2017) <arXiv:1711.05381>. 2023-06-16
r-filelock public Place an exclusive or shared lock on a file. It uses 'LockFile' on Windows and 'fcntl' locks on Unix-like systems. 2023-06-16
r-featurehashing public Feature hashing, also called as the hashing trick, is a method to transform features of a instance to a vector. Thus, it is a method to transform a real dataset to a matrix. Without looking up the indices in an associative array, it applies a hash function to the features and uses their hash values as indices directly. The method of feature hashing in this package was proposed in Weinberger et al. (2009) <arXiv:0902.2206>. The hashing algorithm is the murmurhash3 from the 'digest' package. Please see the README in <https://github.com/wush978/FeatureHashing> for more information. 2023-06-16

© 2025 Anaconda, Inc. All Rights Reserved. (v4.0.7) Legal | Privacy Policy