r-comorbidity
|
public |
Computing comorbidity scores such as the weighted Charlson score (Charlson, 1987 <doi:10.1016/0021-9681(87)90171-8>) and the Elixhauser comorbidity score (Elixhauser, 1998 <doi:10.1097/00005650-199801000-00004>) using ICD-9-CM or ICD-10 codes (Quan, 2005 <doi:10.1097/01.mlr.0000182534.19832.83>).
|
2023-06-16 |
r-cointreg
|
public |
Cointegration methods are widely used in empirical macroeconomics and empirical finance. It is well known that in a cointegrating regression the ordinary least squares (OLS) estimator of the parameters is super-consistent, i.e. converges at rate equal to the sample size T. When the regressors are endogenous, the limiting distribution of the OLS estimator is contaminated by so-called second order bias terms, see e.g. Phillips and Hansen (1990) <DOI:10.2307/2297545>. The presence of these bias terms renders inference difficult. Consequently, several modifications to OLS that lead to zero mean Gaussian mixture limiting distributions have been proposed, which in turn make standard asymptotic inference feasible. These methods include the fully modified OLS (FM-OLS) approach of Phillips and Hansen (1990) <DOI:10.2307/2297545>, the dynamic OLS (D-OLS) approach of Phillips and Loretan (1991) <DOI:10.2307/2298004>, Saikkonen (1991) <DOI:10.1017/S0266466600004217> and Stock and Watson (1993) <DOI:10.2307/2951763> and the new estimation approach called integrated modified OLS (IM-OLS) of Vogelsang and Wagner (2014) <DOI:10.1016/j.jeconom.2013.10.015>. The latter is based on an augmented partial sum (integration) transformation of the regression model. IM-OLS is similar in spirit to the FM- and D-OLS approaches, with the key difference that it does not require estimation of long run variance matrices and avoids the need to choose tuning parameters (kernels, bandwidths, lags). However, inference does require that a long run variance be scaled out. This package provides functions for the parameter estimation and inference with all three modified OLS approaches. That includes the automatic bandwidth selection approaches of Andrews (1991) <DOI:10.2307/2938229> and of Newey and West (1994) <DOI:10.2307/2297912> as well as the calculation of the long run variance.
|
2023-06-16 |
r-coexist
|
public |
species coexistence modeling under asymmetric dispersal and fluctuating source-sink dynamics;testing the proportion of coexistence scenarios driven by neutral and niche processes
|
2023-06-16 |
r-codep
|
public |
Computation of Multiscale Codependence Analysis and spatial eigenvector maps, as an additional feature.
|
2023-06-16 |
r-cobs
|
public |
Qualitatively Constrained (Regression) Smoothing Splines via Linear Programming and Sparse Matrices.
|
2023-06-16 |
r-clusteval
|
public |
An R package that provides a suite of tools to evaluate clustering algorithms, clusterings, and individual clusters.
|
2023-06-16 |
r-cityplot
|
public |
Input: a csv-file for each database table and a controlfile describing relations between tables. Output: An extended ER diagram
|
2023-06-16 |
r-combins
|
public |
Series of partially balanced incomplete block designs (PBIB) based on the combinatory method (S) introduced in (Imane Rezgui et al, 2014) <doi:10.3844/jmssp.2014.45.48>; and it gives their associated U-type design.
|
2023-06-16 |
r-combinat
|
public |
routines for combinatorics
|
2023-06-16 |
r-colmozzie
|
public |
Weekly notified dengue cases and climate variables in Colombo district Sri Lanka from 2008/ week-52 to 2014/ week-21.
|
2023-06-16 |
r-cmrutils
|
public |
A collection of useful helper routines developed by students of the Center for Mathematical Research, Stankin, Moscow.
|
2023-06-16 |
r-clusterpower
|
public |
Calculate power for cluster randomized trials (CRTs) that compare two means, two proportions, or two counts using closed-form solutions. In addition, calculate power for cluster randomized crossover trials using Monte Carlo methods. For more information, see Reich et al. (2012) <doi:10.1371/journal.pone.0035564>.
|
2023-06-16 |
r-clusterhap
|
public |
One haplotype is a combination of SNP (Single Nucleotide Polymorphisms) within the QTL (Quantitative Trait Loci). clusterhap groups together all individuals of a population with the same haplotype. Each group contains individual with the same allele in each SNP, whether or not missing data. Thus, clusterhap groups individuals, that to be imputed, have a non-zero probability of having the same alleles in the entire sequence of SNP's. Moreover, clusterhap calculates such probability from relative frequencies.
|
2023-06-16 |
r-cde
|
public |
Facilitates searching, download and plotting of Water Framework Directive (WFD) reporting data for all waterbodies within the UK Environment Agency area. The types of data that can be downloaded are: WFD status classification data, Reasons for Not Achieving Good (RNAG) status, objectives set for waterbodies, measures put in place to improve water quality and details of associated protected areas. The site accessed is <https://environment.data.gov.uk/catchment-planning/>. The data are made available under the Open Government Licence v3.0 <https://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/>. This package has been peer-reviewed by rOpenSci (v. 0.4.0).
|
2023-06-16 |
r-cla
|
public |
Implements 'Markovitz' Critical Line Algorithm ('CLA') for classical mean-variance portfolio optimization, see Markovitz (1952) <doi:10.2307/2975974>. Care has been taken for correctness in light of previous buggy implementations.
|
2023-06-16 |
r-combmsc
|
public |
Functions for computing optimal convex combinations of model selection criteria based on ranks, along with utility functions for constructing model lists, MSCs, and priors on model lists.
|
2023-06-16 |
r-combineportfolio
|
public |
Estimation of optimal portfolio weights as combination of simple portfolio strategies, like the tangency, global minimum variance (GMV) or naive (1/N) portfolio. It is based on a utility maximizing 8-fund rule. Popular special cases like the Kan-Zhou(2007) 2-fund and 3-fund rule or the Tu-Zhou(2011) estimator are nested.
|
2023-06-16 |
r-cofra
|
public |
Calculates complete functional regulation analysis and visualize the results in a single heatmap. The provided example data is for biological data but the methodology can be used for large data sets to compare quantitative entities that can be grouped. For example, a store might divide entities into cloth, food, car products etc and want to see how sales changes in the groups after some event. The theoretical background for the calculations are provided in New insights into functional regulation in MS-based drug profiling, Ana Sofia Carvalho, Henrik Molina & Rune Matthiesen, Scientific Reports <doi:10.1038/srep18826>.
|
2023-06-16 |
r-cocor
|
public |
Statistical tests for the comparison between two correlations based on either independent or dependent groups. Dependent correlations can either be overlapping or nonoverlapping. A web interface is available on the website http://comparingcorrelations.org. A plugin for the R GUI and IDE RKWard is included. Please install RKWard from https://rkward.kde.org to use this feature. The respective R package 'rkward' cannot be installed directly from a repository, as it is a part of RKWard.
|
2023-06-16 |
r-clustmixtype
|
public |
Functions to perform k-prototypes partitioning clustering for mixed variable-type data according to Z.Huang (1998): Extensions to the k-Means Algorithm for Clustering Large Data Sets with Categorical Variables, Data Mining and Knowledge Discovery 2, 283-304, <DOI:10.1023/A:1009769707641>.
|
2023-06-16 |
r-cluster.datasets
|
public |
A collection of data sets for teaching cluster analysis.
|
2023-06-16 |
r-comat
|
public |
Builds co-occurrence matrices based on spatial raster data. It includes creation of weighted co-occurrence matrices (wecoma) and integrated co-occurrence matrices (incoma; Vadivel et al. (2007) <doi:10.1016/j.patrec.2007.01.004>).
|
2023-06-16 |
r-clinsig
|
public |
Functions for calculating clinical significance.
|
2023-06-16 |
r-clinpk
|
public |
Calculates equations commonly used in clinical pharmacokinetics and clinical pharmacology, such as equations for dose individualization, compartmental pharmacokinetics, drug exposure, anthropomorphic calculations, clinical chemistry, and conversion of common clinical parameters. Where possible and relevant, it provides multiple published and peer-reviewed equations within the respective R function.
|
2023-06-16 |
r-cocron
|
public |
Statistical tests for the comparison between two or more alpha coefficients based on either dependent or independent groups of individuals. A web interface is available at http://comparingcronbachalphas.org. A plugin for the R GUI and IDE RKWard is included. Please install RKWard from https:// rkward.kde.org to use this feature. The respective R package 'rkward' cannot be installed directly from a repository, as it is a part of RKWard.
|
2023-06-16 |
r-cmocean
|
public |
Perceptually uniform palettes for commonly used variables in oceanography as functions taking an integer and producing character vectors of colours. See Thyng, K.M., Greene, C.A., Hetland, R.D., Zimmerle, H.M. and S.F. DiMarco (2016) <doi:10.5670/oceanog.2016.66> for the guidelines adhered to when creating the palettes.
|
2023-06-16 |
r-clustergeneration
|
public |
We developed the clusterGeneration package to provide functions for generating random clusters, generating random covariance/correlation matrices, calculating a separation index (data and population version) for pairs of clusters or cluster distributions, and 1-D and 2-D projection plots to visualize clusters. The package also contains a function to generate random clusters based on factorial designs with factors such as degree of separation, number of clusters, number of variables, number of noisy variables.
|
2023-06-16 |
r-bios2cor
|
public |
Utilities for computation and analysis of correlation/co-variation in multiple sequence alignments and in side chain motions during molecular dynamics simulations. Features include the computation of correlation/co-variation scores using a variety of scoring functions between either sequence positions in alignments or side chain dihedral angles in molecular dynamics simulations and to analyze the correlation/co-variation matrix through a variety of tools including network representation and principal components analysis. In addition, several utility functions are based on the R graphical environment to provide friendly tools for help in data interpretation. Examples of sequence co-variation analysis and utility tools are provided in: Pele J, Moreau M, Abdi H, Rodien P, Castel H, Chabbert M. (2014) <doi:10.1002/prot.24570>. This work was supported by the French National Research Agency (Grant number: ANR-11-BSV2-026).
|
2023-06-16 |
r-comparec
|
public |
Proposed by Harrell, the C index or concordance C, is considered an overall measure of discrimination in survival analysis between a survival outcome that is possibly right censored and a predictive-score variable, which can represent a measured biomarker or a composite-score output from an algorithm that combines multiple biomarkers. This package aims to statistically compare two C indices with right-censored survival outcome, which commonly arise from a paired design and thus resulting two correlated C indices.
|
2023-06-16 |
r-colourvalues
|
public |
Maps one of the viridis colour palettes, or a user-specified palette to values. Viridis colour maps are created by Stéfan van der Walt and Nathaniel Smith. They were set as the default palette for the 'Python' 'Matplotlib' library, introduced at SciPy 2015 conference <http://scipy2015.scipy.org/ehome/index.php?eventid=115969&>. Other palettes available in this library have been derived from 'RColorBrewer' <https://CRAN.R-project.org/package=RColorBrewer> and 'colorspace' <https://CRAN.R-project.org/package=colorspace> packages.
|
2023-06-16 |
r-cobra
|
public |
This package performs prediction for regression-oriented problems, aggregating in a nonlinear scheme any basic regression machines suggested by the context and provided by the user. If the user has no valuable knowledge on the data, four defaults machines wrappers are implemented so as to cover a minimal spectrum of prediction methods. If necessary, the computations may be parallelized. The method is described in Biau, Fischer, Guedj and Malley (2013), "COBRA: A Nonlinear Aggregation Strategy".
|
2023-06-16 |
r-clustercrit
|
public |
Compute clustering validation indices.
|
2023-06-16 |
r-clubsandwich
|
public |
Provides several cluster-robust variance estimators (i.e., sandwich estimators) for ordinary and weighted least squares linear regression models, including the bias-reduced linearization estimator introduced by Bell and McCaffrey (2002) <http://www.statcan.gc.ca/pub/12-001-x/2002002/article/9058-eng.pdf> and developed further by Pustejovsky and Tipton (2017) <DOI:10.1080/07350015.2016.1247004>. The package includes functions for estimating the variance- covariance matrix and for testing single- and multiple- contrast hypotheses based on Wald test statistics. Tests of single regression coefficients use Satterthwaite or saddle-point corrections. Tests of multiple- contrast hypotheses use an approximation to Hotelling's T-squared distribution. Methods are provided for a variety of fitted models, including lm() and mlm objects, glm(), ivreg() (from package 'AER'), plm() (from package 'plm'), gls() and lme() (from 'nlme'), robu() (from 'robumeta'), and rma.uni() and rma.mv() (from 'metafor').
|
2023-06-16 |
r-clime
|
public |
A robust constrained L1 minimization method for estimating a large sparse inverse covariance matrix (aka precision matrix), and recovering its support for building graphical models. The computation uses linear programming.
|
2023-06-16 |
r-cleanr
|
public |
Check your R code for some of the most common layout flaws. Many tried to teach us how to write code less dreadful, be it implicitly as B. W. Kernighan and D. M. Ritchie (1988) <ISBN:0-13-110362-8> in 'The C Programming Language' did, be it explicitly as R.C. Martin (2008) <ISBN:0-13-235088-2> in 'Clean Code: A Handbook of Agile Software Craftsmanship' did. So we should check our code for files too long or wide, functions with too many lines, too wide lines, too many arguments or too many levels of nesting. Note: This is not a static code analyzer like pylint or the like. Checkout <https://cran.r-project.org/package=lintr> instead.
|
2023-06-16 |
r-clam
|
public |
Performs 'classical' age-depth modelling of dated sediment deposits - prior to applying more sophisticated techniques such as Bayesian age-depth modelling. Any radiocarbon dated depths are calibrated. Age-depth models are constructed by sampling repeatedly from the dated levels, each time drawing age-depth curves. Model types include linear interpolation, linear or polynomial regression, and a range of splines. See Blaauw (2010). <doi:10.1016/j.quageo.2010.01.002>.
|
2023-06-16 |
r-commonsmath
|
public |
Java JAR files for the Apache Commons Mathematics Library for use by users and other packages.
|
2023-06-16 |
r-codatags
|
public |
Computes genomic breeding values using external information on the markers. The package fits a linear mixed model with heteroscedastic random effects, where the random effect variance is fitted using a linear predictor and a log link. The method is described in Mouresan, Selle and Ronnegard (2019) <doi:10.1101/636746>.
|
2023-06-16 |
r-cmna
|
public |
Provides the source and examples for James P. Howard, II, "Computational Methods for Numerical Analysis with R," <http://howardjp.github.io/cmna/>, a book on numerical methods in R.
|
2023-06-16 |
r-clusterranktest
|
public |
Nonparametric rank based tests (rank-sum tests and signed-rank tests) for clustered data, especially useful for clusters having informative cluster size and intra-cluster group size.
|
2023-06-16 |
r-chemospec2d
|
public |
A collection of functions for exploratory chemometrics of 2D spectroscopic data sets such as COSY (correlated spectroscopy) and HSQC (heteronuclear single quantum coherence) 2D NMR (nuclear magnetic resonance) spectra. 'ChemoSpec2D' deploys methods aimed primarily at classification of samples and the identification of spectral features which are important in distinguishing samples from each other. Each 2D spectrum (a matrix) is treated as the unit of observation, and thus the physical sample in the spectrometer corresponds to the sample from a statistical perspective. In addition to chemometric tools, a few tools are provided for plotting 2D spectra, but these are not intended to replace the functionality typically available on the spectrometer. 'ChemoSpec2D' takes many of its cues from 'ChemoSpec' and tries to create consistent graphical output and to be very user friendly.
|
2023-06-16 |
r-circnntsr
|
public |
Includes functions for the analysis of circular data using distributions based on Nonnegative Trigonometric Sums (NNTS). The package includes functions for calculation of densities and distributions, for the estimation of parameters, for plotting and more.
|
2023-06-16 |
r-choicemodelr
|
public |
Implements an MCMC algorithm to estimate a hierarchical multinomial logit model with a normal heterogeneity distribution. The algorithm uses a hybrid Gibbs Sampler with a random walk metropolis step for the MNL coefficients for each unit. Dependent variable may be discrete or continuous. Independent variables may be discrete or continuous with optional order constraints. Means of the distribution of heterogeneity can optionally be modeled as a linear function of unit characteristics variables.
|
2023-06-16 |
r-colortools
|
public |
R package with handy functions to help users select and play with color schemes in an HSV color model
|
2023-06-16 |
r-colorfulvennplot
|
public |
Given 2-,3- or 4-dimensional data, plots a Venn diagram, i.e. 'crossing circles'. The user can specify values, labels for each circle-group and unique colors for each plotted part. Here is what it would look like for a 3-dimensional plot: http://elliotnoma.files.wordpress.com/2011/02/venndiagram.png. To see what the 4-dimensional plot looks like, go to http://elliotnoma.files.wordpress.com/2013/03/4dplot.png.
|
2023-06-16 |
r-coconut
|
public |
Allows for pooled analysis of microarray data by batch-correcting control samples, and then applying the derived correction parameters to non-control samples to obtain bias-free, inter-dataset corrected data.
|
2023-06-16 |
r-cmplot
|
public |
Manhattan plot, a type of scatter plot, was widely used to display the association results. However, it is usually time-consuming and laborious for a non-specialist user to write scripts and adjust parameters of an elaborate plot. Moreover, the ever-growing traits measured have necessitated the integration of results from different Genome-wide association study researches. Circle Manhattan Plot is the first open R package that can lay out Genome-wide association study P-value results in both traditional rectangular patterns, QQ-plot and novel circular ones. United in only one bull's eye style plot, association results from multiple traits can be compared interactively, thereby to reveal both similarities and differences between signals.
|
2023-06-16 |
r-clvalid
|
public |
Statistical and biological validation of clustering results.
|
2023-06-16 |
r-chemospec
|
public |
A collection of functions for top-down exploratory data analysis of spectral data including nuclear magnetic resonance (NMR), infrared (IR), Raman, X-ray fluorescence (XRF) and other similar types of spectroscopy. Includes functions for plotting and inspecting spectra, peak alignment, hierarchical cluster analysis (HCA), principal components analysis (PCA) and model-based clustering. Robust methods appropriate for this type of high-dimensional data are available. ChemoSpec is designed for structured experiments, such as metabolomics investigations, where the samples fall into treatment and control groups. Graphical output is formatted consistently for publication quality plots. ChemoSpec is intended to be very user friendly and to help you get usable results quickly. A vignette covering typical operations is available.
|
2023-06-16 |
r-cmf
|
public |
Collective matrix factorization (CMF) finds joint low-rank representations for a collection of matrices with shared row or column entities. This code learns variational Bayesian approximation for CMF, supporting multiple likelihood potentials and missing data, while identifying both factors shared by multiple matrices and factors private for each matrix.
|
2023-06-16 |