r-mudens
|
public |
Compute a density estimate from a vector of right-censored survival time using kernel functions.
|
2025-04-22 |
r-muchpoint
|
public |
Nonparametric approach to estimate the location of block boundaries (change-points) of non-overlapping blocks in a random symmetric matrix which consists of random variables whose distribution changes from block to block. BRAULT Vincent, OUADAH Sarah, SANSONNET Laure and LEVY-LEDUC Celine (2017) <doi:10.1016/j.jmva.2017.12.005>.
|
2025-04-22 |
r-mts
|
public |
Multivariate Time Series (MTS) is a general package for analyzing multivariate linear time series and estimating multivariate volatility models. It also handles factor models, constrained factor models, asymptotic principal component analysis commonly used in finance and econometrics, and principal volatility component analysis. (a) For the multivariate linear time series analysis, the package performs model specification, estimation, model checking, and prediction for many widely used models, including vector AR models, vector MA models, vector ARMA models, seasonal vector ARMA models, VAR models with exogenous variables, multivariate regression models with time series errors, augmented VAR models, and Error-correction VAR models for co-integrated time series. For model specification, the package performs structural specification to overcome the difficulties of identifiability of VARMA models. The methods used for structural specification include Kronecker indices and Scalar Component Models. (b) For multivariate volatility modeling, the MTS package handles several commonly used models, including multivariate exponentially weighted moving-average volatility, Cholesky decomposition volatility models, dynamic conditional correlation (DCC) models, copula-based volatility models, and low-dimensional BEKK models. The package also considers multiple tests for conditional heteroscedasticity, including rank-based statistics. (c) Finally, the MTS package also performs forecasting using diffusion index, transfer function analysis, Bayesian estimation of VAR models, and multivariate time series analysis with missing values.Users can also use the package to simulate VARMA models, to compute impulse response functions of a fitted VARMA model, and to calculate theoretical cross-covariance matrices of a given VARMA model.
|
2025-04-22 |
r-mtlr
|
public |
An implementation of Multi-Task Logistic Regression (MTLR) for R. This package is based on the method proposed by Yu et al. (2011) which utilized MTLR for generating individual survival curves by learning feature weights which vary across time. This model was further extended to account for left and interval censored data.
|
2025-04-22 |
r-mstate
|
public |
Contains functions for data preparation, descriptives, hazard estimation and prediction with Aalen-Johansen or simulation in competing risks and multi-state models, see Putter, Fiocco, Geskus (2007) <doi:10.1002/sim.2712>.
|
2025-04-22 |
r-mssm
|
public |
Provides methods to perform parameter estimation and make analysis of multivariate observed outcomes through time which depends on a latent state variable. All methods scale well in the dimension of the observed outcomes at each time point. The package contains an implementation of a Laplace approximation, particle filters like suggested by Lin, Zhang, Cheng, & Chen (2005) <doi:10.1198/016214505000000349>, and the gradient and observed information matrix approximation suggested by Poyiadjis, Doucet, & Singh (2011) <doi:10.1093/biomet/asq062>.
|
2025-04-22 |
r-msimcc
|
public |
Micro simulation model to reproduce natural history of cervical cancer and cost-effectiveness evaluation of prevention strategies. See Georgalis L, de Sanjose S, Esnaola M, Bosch F X, Diaz M (2016) <doi:10.1097/CEJ.0000000000000202> for more details.
|
2025-04-22 |
r-msgps
|
public |
Computes the degrees of freedom of the lasso, elastic net, generalized elastic net and adaptive lasso based on the generalized path seeking algorithm. The optimal model can be selected by model selection criteria including Mallows' Cp, bias-corrected AIC (AICc), generalized cross validation (GCV) and BIC.
|
2025-04-22 |
r-msglasso
|
public |
For fitting multivariate response and multiple predictor linear regressions with an arbitrary group structure assigned on the regression coefficient matrix, using the multivariate sparse group lasso and the mixed coordinate descent algorithm.
|
2025-04-22 |
r-msde
|
public |
Implements an MCMC sampler for the posterior distribution of arbitrary time-homogeneous multivariate stochastic differential equation (SDE) models with possibly latent components. The package provides a simple entry point to integrate user-defined models directly with the sampler's C++ code, and parallelizes large portions of the calculations when compiled with 'OpenMP'.
|
2025-04-22 |
r-msda
|
public |
Efficient procedures for computing a new Multi-Class Sparse Discriminant Analysis method that estimates all discriminant directions simultaneously.
|
2025-04-22 |
r-msbp
|
public |
Performs Bayesian nonparametric multiscale density estimation and multiscale testing of group differences with multiscale Bernstein polynomials (msBP) mixtures as in Canale and Dunson (2016).
|
2025-04-22 |
r-mrs
|
public |
An implementation of the MRS algorithm for comparison across distributions, as described in Jacopo Soriano, Li Ma (2016) <doi:10.1111/rssb.12180>. The model is based on a nonparametric process taking the form of a Markov model that transitions between a "null" and an "alternative" state on a multi-resolution partition tree of the sample space. MRS effectively detects and characterizes a variety of underlying differences. These differences can be visualized using several plotting functions.
|
2025-04-22 |
r-mrmre
|
public |
"Computes mutual information matrices from continuous, categorical and survival variables, as well as feature selection with minimum redundancy, maximum relevance (mRMR) and a new ensemble mRMR technique with DOI: N De Jay et al. (2013) <doi:10.1093/bioinformatics/btt383>."
|
2025-04-22 |
r-mrm
|
public |
Conditional maximum likelihood estimation via the EM algorithm and information-criterion-based model selection in binary mixed Rasch models.
|
2025-04-22 |
r-mrfse
|
public |
A Markov random field structure estimator that uses a penalized maximum conditional likelihood method similar to the Bayesian Information Criterion (Frondana, 2016) <doi:10.11606/T.45.2018.tde-02022018-151123>.
|
2025-04-22 |
r-mra
|
public |
Accomplishes mark-recapture analysis with covariates. Models available include the Cormack-Jolly-Seber open population (Cormack (1972) <doi:10.2307/2556151>; Jolly (1965) <doi:10.2307/2333826>; Seber (1965) <doi:10.2307/2333827>) and Huggin's (1989) <doi:10.2307/2336377> closed population. Link functions include logit, sine, and hazard. Model selection, model averaging, plot, and simulation routines included. Open population size by the Horvitz-Thompson (1959) <doi:10.2307/2280784> estimator.
|
2025-04-22 |
r-mptinr
|
public |
Provides a user-friendly way for the analysis of multinomial processing tree (MPT) models (e.g., Riefer, D. M., and Batchelder, W. H. [1988]. Multinomial modeling and the measurement of cognitive processes. Psychological Review, 95, 318-339) for single and multiple datasets. The main functions perform model fitting and model selection. Model selection can be done using AIC, BIC, or the Fisher Information Approximation (FIA) a measure based on the Minimum Description Length (MDL) framework. The model and restrictions can be specified in external files or within an R script in an intuitive syntax or using the context-free language for MPTs. The 'classical' .EQN file format for model files is also supported. Besides MPTs, this package can fit a wide variety of other cognitive models such as SDT models (see fit.model). It also supports multicore fitting and FIA calculation (using the snowfall package), can generate or bootstrap data for simulations, and plot predicted versus observed data.
|
2025-04-22 |
r-mpsem
|
public |
Computational tools to represent phylogenetic signals using adapted eigenvector maps.
|
2025-04-22 |
r-mpmi
|
public |
Uses a kernel smoothing approach to calculate Mutual Information for comparisons between all types of variables including continuous vs continuous, continuous vs discrete and discrete vs discrete. Uses a nonparametric bias correction giving Bias Corrected Mutual Information (BCMI). Implemented efficiently in Fortran 95 with OpenMP and suited to large genomic datasets.
|
2025-04-22 |
r-mp
|
public |
Multidimensional projection techniques are used to create two dimensional representations of multidimensional data sets.
|
2025-04-22 |
r-monreg
|
public |
Estimates monotone regression and variance functions in a nonparametric model.
|
2025-04-22 |
r-monopoly
|
public |
Functions for fitting monotone polynomials to data. Detailed discussion of the methodologies used can be found in Murray, Mueller and Turlach (2013) <doi:10.1007/s00180-012-0390-5> and Murray, Mueller and Turlach (2016) <doi:10.1080/00949655.2016.1139582>.
|
2025-04-22 |
r-monomvn
|
public |
Estimation of multivariate normal and student-t data of arbitrary dimension where the pattern of missing data is monotone. Through the use of parsimonious/shrinkage regressions (plsr, pcr, lasso, ridge, etc.), where standard regressions fail, the package can handle a nearly arbitrary amount of missing data. The current version supports maximum likelihood inference and a full Bayesian approach employing scale-mixtures for Gibbs sampling. Monotone data augmentation extends this Bayesian approach to arbitrary missingness patterns. A fully functional standalone interface to the Bayesian lasso (from Park & Casella), Normal-Gamma (from Griffin & Brown), Horseshoe (from Carvalho, Polson, & Scott), and ridge regression with model selection via Reversible Jump, and student-t errors (from Geweke) is also provided.
|
2025-04-22 |
r-monetdb.r
|
public |
Allows to pull data from MonetDB into R. Includes a DBI implementation and a dplyr backend.
|
2025-04-22 |