r-cld3
|
public |
Google's Compact Language Detector 3 is a neural network model for language identification and the successor of 'cld2' (available from CRAN). The algorithm is still experimental and takes a novel approach to language detection with different properties and outcomes. It can be useful to combine this with the Bayesian classifier results from 'cld2'. See <https://github.com/google/cld3#readme> for more information.
|
2025-04-22 |
r-cld2
|
public |
Bindings to Google's C++ library Compact Language Detector 2 (see <https://github.com/cld2owners/cld2#readme> for more information). Probabilistically detects over 80 languages in plain text or HTML. For mixed-language input it returns the top three detected languages and their approximate proportion of the total classified text bytes (e.g. 80% English and 20% French out of 1000 bytes). There is also a 'cld3' package on CRAN which uses a neural network model instead.
|
2025-04-22 |
r-cladorcpp
|
public |
Various cladogenesis-related calculations that are slow in pure R are implemented in C++ with Rcpp. These include the calculation of the probability of various scenarios for the inheritance of geographic range at the divergence events on a phylogenetic tree, and other calculations necessary for models which are not continuous-time markov chains (CTMC), but where change instead occurs instantaneously at speciation events. Typically these models must assess the probability of every possible combination of (ancestor state, left descendent state, right descendent state). This means that there are up to (# of states)^3 combinations to investigate, and in biogeographical models, there can easily be hundreds of states, so calculation time becomes an issue. C++ implementation plus clever tricks (many combinations can be eliminated a priori) can greatly speed the computation time over naive R implementations. CITATION INFO: This package is the result of my Ph.D. research, please cite the package if you use it! Type: citation(package="cladoRcpp") to get the citation information.
|
2025-04-22 |
r-ckmeans.1d.dp
|
public |
Fast optimal univariate clustering and segementation by dynamic programming. Three types of problem including univariate k-means, k-median, and k-segments are solved with guaranteed optimality and reproducibility. The core algorithm minimizes the sum of within-cluster distances using respective metrics. Its advantage over heuristic clustering algorithms in efficiency and accuracy is increasingly pronounced as the number of clusters k increases. Weighted k-means and unweighted k-segments algorithms can also optimally segment time series and perform peak calling. An auxiliary function generates histograms that are adaptive to patterns in data. In contrast to heuristic methods, this package provides a powerful set of tools for univariate data analysis with guaranteed optimality. Use four spaces when indenting paragraphs within the Description.
|
2025-04-22 |
r-cklrt
|
public |
Composite Kernel Machine Regression based on Likelihood Ratio Test (CKLRT): in this package, we develop a kernel machine regression framework to model the overall genetic effect of a SNP-set, considering the possible GE interaction. Specifically, we use a composite kernel to specify the overall genetic effect via a nonparametric function and we model additional covariates parametrically within the regression framework. The composite kernel is constructed as a weighted average of two kernels, one corresponding to the genetic main effect and one corresponding to the GE interaction effect. We propose a likelihood ratio test (LRT) and a restricted likelihood ratio test (RLRT) for statistical significance. We derive a Monte Carlo approach for the finite sample distributions of LRT and RLRT statistics. (N. Zhao, H. Zhang, J. Clark, A. Maity, M. Wu. Composite Kernel Machine Regression based on Likelihood Ratio Test with Application for Combined Genetic and Gene-environment Interaction Effect (Submitted).)
|
2025-04-22 |
r-cit
|
public |
A likelihood-based hypothesis testing approach is implemented for assessing causal mediation. For example, it could be used to test for mediation of a known causal association between a DNA variant, the 'instrumental variable', and a clinical outcome or phenotype by gene expression or DNA methylation, the potential mediator. Another example would be testing mediation of the effect of a drug on a clinical outcome by the molecular target. The hypothesis test generates a p-value or permutation-based FDR value with confidence intervals to quantify uncertainty in the causal inference. The outcome can be represented by either a continuous or binary variable, the potential mediator is continuous, and the instrumental variable can be continuous or binary and is not limited to a single variable but may be a design matrix representing multiple variables.
|
2025-04-22 |
r-cirt
|
public |
Jointly model the accuracy of cognitive responses and item choices within a bayesian hierarchical framework as described by Culpepper and Balamuta (2015) <doi:10.1007/s11336-015-9484-7>. In addition, the package contains the datasets used within the analysis of the paper.
|
2025-04-22 |
r-circularddm
|
public |
Circular drift-diffusion model for continuous reports.
|
2025-04-22 |
r-circular
|
public |
Circular Statistics, from "Topics in circular Statistics" (2001) S. Rao Jammalamadaka and A. SenGupta, World Scientific.
|
2025-04-22 |
r-cinterpolate
|
public |
Simple interpolation methods designed to be used from C code. Supports constant, linear and spline interpolation. An R wrapper is included but this package is primarily designed to be used from C code using 'LinkingTo'. The spline calculations are classical cubic interpolation, e.g., Forsythe, Malcolm and Moler (1977) <ISBN: 9780131653320>.
|
2025-04-22 |
r-cifsmry
|
public |
Estimate of cumulative incidence function in two samples. Provide weighted summary statistics based on various methods and weights.
|
2025-04-22 |
r-chunkr
|
public |
Read tables chunk by chunk using a C++ backend and a simple R interface.
|
2025-04-22 |
r-chopthin
|
public |
Resampling is a standard step in particle filtering and in sequential Monte Carlo. This package implements the chopthin resampler, which keeps a bound on the ratio between the largest and the smallest weights after resampling.
|
2025-04-22 |
r-cholwishart
|
public |
Sampling from the Cholesky factorization of a Wishart random variable, sampling from the inverse Wishart distribution, sampling from the Cholesky factorization of an inverse Wishart random variable, sampling from the pseudo Wishart distribution, sampling from the generalized inverse Wishart distribution, computing densities for the Wishart and inverse Wishart distributions, and computing the multivariate gamma and digamma functions.
|
2025-04-22 |
r-chnosz
|
public |
An integrated set of tools for thermodynamic calculations in aqueous geochemistry and geobiochemistry. Functions are provided for writing balanced reactions to form species from user-selected basis species and for calculating the standard molal properties of species and reactions, including the standard Gibbs energy and equilibrium constant. Calculations of the non-equilibrium chemical affinity and equilibrium chemical activity of species can be portrayed on diagrams as a function of temperature, pressure, or activity of basis species; in two dimensions, this gives a maximum affinity or predominance diagram. The diagrams have formatted chemical formulas and axis labels, and water stability limits can be added to Eh-pH, oxygen fugacity- temperature, and other diagrams with a redox variable. The package has been developed to handle common calculations in aqueous geochemistry, such as solubility due to complexation of metal ions, mineral buffers of redox or pH, and changing the basis species across a diagram ("mosaic diagrams"). CHNOSZ also has unique capabilities for comparing the compositional and thermodynamic properties of different proteins.
|
2025-04-22 |
r-chiptest
|
public |
Nonparametric Tests to identify the differential enrichment region for two conditions or time-course ChIP-seq data. It includes: data preprocessing function, estimation of a small constant used in hypothesis testing, a kernel-based two sample nonparametric test, two assumption-free two sample nonparametric test.
|
2025-04-22 |
r-cheddar
|
public |
Provides a flexible, extendable representation of an ecological community and a range of functions for analysis and visualisation, focusing on food web, body mass and numerical abundance data. Allows inter-web comparisons such as examining changes in community structure over environmental, temporal or spatial gradients.
|
2025-04-22 |
r-cheb
|
public |
Discrete Linear Chebyshev Approximation
|
2025-04-22 |
r-chargetransport
|
public |
This package provides functions to compute Marcus, Marcus-Levich-Jortner or Landau-Zener charge transfer rates. These rates can then be used to perform kinetic Monte Carlo simulations to estimate charge carrier mobilities in molecular materials. The preparation of this package was supported by the the Fondazione Cariplo (PLENOS project, ref. 2011-0349).
|
2025-04-22 |
r-chaos01
|
public |
Computes and visualize the results of the 0-1 test for chaos proposed by Gottwald and Melbourne (2004) <DOI:10.1137/080718851>. The algorithm is available in parallel for the independent values of parameter c. Additionally, fast RQA is added to distinguish chaos from noise.
|
2025-04-22 |
r-channelattribution
|
public |
Advertisers use a variety of online marketing channels to reach consumers and they want to know the degree each channel contributes to their marketing success. This is called the online multi-channel attribution problem. This package contains a probabilistic algorithm for the attribution problem. The model uses a k-order Markov representation to identify structural correlations in the customer journey data. The package also contains three heuristic algorithms (first-touch, last-touch and linear-touch approach) for the same problem. The algorithms are implemented in C++.
|
2025-04-22 |
r-changepointshd
|
public |
This implements the methods developed in, L. Bybee and Y. Atchade. (2018). Contains a series of methods for estimating change-points given user specified black-box models. The methods include binary segmentation for multiple change-point estimation. For estimating each individual change-point the package includes simulated annealing, brute force, and, for Gaussian graphical models, an applications specific rank-one update implementation. Additionally, code for estimating Gaussian graphical models is included. The goal of this package is to allow for the efficient estimation of change-points in complicated models with high dimensional data.
|
2025-04-22 |
r-changepoint
|
public |
Implements various mainstream and specialised changepoint methods for finding single and multiple changepoints within data. Many popular non-parametric and frequentist methods are included. The cpt.mean(), cpt.var(), cpt.meanvar() functions should be your first point of call.
|
2025-04-22 |
r-cgraph
|
public |
Allows to create, evaluate, and differentiate computational graphs in R. A computational graph is a graph representation of a multivariate function decomposed by its (elementary) operations. Nodes in the graph represent arrays while edges represent dependencies among the arrays. An advantage of expressing a function as a computational graph is that this enables to differentiate the function by automatic differentiation. The 'cgraph' package supports various operations including basic arithmetic, trigonometry operations, and linear algebra operations. It differentiates computational graphs by reverse automatic differentiation. The flexible architecture of the package makes it applicable to solve a variety of problems including local sensitivity analysis, gradient-based optimization, and machine learning.
|
2025-04-22 |
r-cglasso
|
public |
The l1-penalized censored Gaussian graphical model is an extension of the graphical lasso estimator developed to handle datasets with censored observations. An EM-like algorithm is implemented to estimate the parameters of the censored Gaussian graphical models.
|
2025-04-22 |