About Anaconda Help Download Anaconda

r_test / packages

Package Name Access Summary Updated
r-compr public Different tools for describing and analysing paired comparison data are presented. Main methods are estimation of products scores according Bradley Terry Luce model. A segmentation of the individual could be conducted on the basis of a mixture distribution approach. The number of classes can be tested by the use of Monte Carlo simulations. This package deals also with multi-criteria paired comparison data. 2025-04-22
r-compound.cox public Univariate feature selection and compound covariate methods under the Cox model with high-dimensional features (e.g., gene expressions). Available are survival data for non-small-cell lung cancer patients with gene expressions (Chen et al 2007 New Engl J Med) <DOI:10.1056/NEJMoa060096>, statistical methods in Emura et al (2012 PLoS ONE) <DOI:10.1371/journal.pone.0047627>, Emura & Chen (2016 Stat Methods Med Res) <DOI:10.1177/0962280214533378>, and Emura et al. (2019)<DOI:10.1016/j.cmpb.2018.10.020>. Algorithms for generating correlated gene expressions are also available. 2025-04-22
r-compoisson public Provides routines for density and moments of the Conway-Maxwell-Poisson distribution as well as functions for fitting the COM-Poisson model for over/under-dispersed count data. 2025-04-22
r-complognormal public Computes the probability density function, cumulative distribution function, quantile function, random numbers of any composite model based on the lognormal distribution. 2025-04-22
r-complexity public Allows for the easy computation of complexity: the proportion of the parameter space in line with the hypothesis by chance. The package comes with a Shiny application in which the calculations can be conducted as well. 2025-04-22
r-cointmonitor public We propose a consistent monitoring procedure to detect a structural change from a cointegrating relationship to a spurious relationship. The procedure is based on residuals from modified least squares estimation, using either Fully Modified, Dynamic or Integrated Modified OLS. It is inspired by Chu et al. (1996) <DOI:10.2307/2171955> in that it is based on parameter estimation on a pre-break "calibration" period only, rather than being based on sequential estimation over the full sample. See the discussion paper <DOI:10.2139/ssrn.2624657> for further information. This package provides the monitoring procedures for both the cointegration and the stationarity case (while the latter is just a special case of the former one) as well as printing and plotting methods for a clear presentation of the results. 2025-04-22
r-cloneseeker public Defines the classes and functions used to simulate and to analyze data sets describing copy number variants and, optionally, sequencing mutations in order to detect clonal subsets. See Zucker et al. (2019) <doi:10.1093/bioinformatics/btz057>. 2025-04-22
r-chor public Learning the structure of graphical models from datasets with thousands of variables. More information about the research papers detailing the theory behind Chordalysis is available at <http://www.francois-petitjean.com/Research> (KDD 2016, SDM 2015, ICDM 2014, ICDM 2013). The R package development site is <https://github.com/HerrmannM/Monash-ChoR>. 2025-04-22
r-bayess public bayess contains a collection of functions that allows the reenactment of the R programs used in the book "Bayesian Essentials with R" (revision of "Bayesian Core") without further programming. R code being available as well, they can be modified by the user to conduct one's own simulations. 2025-04-22
r-aptools public We provide tools to estimate two prediction accuracy metrics, the average positive predictive values (AP) as well as the well-known AUC (the area under the receiver operator characteristic curve) for risk scores. The outcome of interest is either binary or censored event time. Note that for censored event time, our functions' estimates, the AP and the AUC, are time-dependent for pre-specified time interval(s). A function that compares the APs of two risk scores/markers is also included. Optional outputs include positive predictive values and true positive fractions at the specified marker cut-off values, and a plot of the time-dependent AP versus time (available for event time data). 2025-04-22
r-covtestr public Testing functions for Covariance Matrices. These tests include high-dimension homogeneity of covariance matrix testing described by Schott (2007) <doi:10.1016/j.csda.2007.03.004> and high-dimensional one-sample tests of covariance matrix structure described by Fisher, et al. (2010) <doi:10.1016/j.jmva.2010.07.004>. Covariance matrix tests use C++ to speed performance and allow larger data sets. 2025-04-22
r-covr public Track and report code coverage for your package and (optionally) upload the results to a coverage service like 'Codecov' <http://codecov.io> or 'Coveralls' <http://coveralls.io>. Code coverage is a measure of the amount of code being exercised by a set of tests. It is an indirect measure of test quality and completeness. This package is compatible with any testing methodology or framework and tracks coverage of both R code and compiled C/C++/FORTRAN code. 2025-04-22
r-covbm public Allows Brownian motion, fractional Brownian motion, and integrated Ornstein-Uhlenbeck process components to be added to linear and non-linear mixed effects models using the structures and methods of the 'nlme' package. 2025-04-22
r-covafillr public Facilitates local polynomial regression for state dependent covariates in state-space models. The functionality can also be used from 'C++' based model builder tools such as 'Rcpp'/'inline', 'TMB', or 'JAGS'. 2025-04-22
r-costsensitive public Reduction-based techniques for cost-sensitive multi-class classification, in which each observation has a different cost for classifying it into one class, and the goal is to predict the class with the minimum expected cost for each new observation. Implements Weighted All-Pairs (Beygelzimer, A., Langford, J., & Zadrozny, B., 2008, <doi:10.1007/978-0-387-79361-0_1>), Weighted One-Vs-Rest (Beygelzimer, A., Dani, V., Hayes, T., Langford, J., & Zadrozny, B., 2005, <https://dl.acm.org/citation.cfm?id=1102358>) and Regression One-Vs-Rest. Works with arbitrary classifiers taking observation weights, or with regressors. Also implements cost-proportionate rejection sampling for working with classifiers that don't accept observation weights. 2025-04-22
r-corrcoverage public Using a computationally efficient method, the package can be used to find the corrected coverage estimate of a credible set of putative causal variants from Bayesian genetic fine-mapping. The package can also be used to obtain a corrected credible set if required; that is, the smallest set of variants required such that the corrected coverage estimate of the resultant credible set is within some user defined accuracy of the desired coverage. Maller et al. (2012) <doi:10.1038/ng.2435>, Wakefield (2009) <doi:10.1002/gepi.20359>, Fortune and Wallace (2018) <doi:10.1093/bioinformatics/bty898>. 2025-04-22
r-corpus public Text corpus data analysis, with full support for international text (Unicode). Functions for reading data from newline-delimited 'JSON' files, for normalizing and tokenizing text, for searching for term occurrences, and for computing term occurrence frequencies, including n-grams. 2025-04-22
r-corelearn public A suite of machine learning algorithms written in C++ with the R interface contains several learning techniques for classification and regression. Predictive models include e.g., classification and regression trees with optional constructive induction and models in the leaves, random forests, kNN, naive Bayes, and locally weighted regression. All predictions obtained with these models can be explained and visualized with the 'ExplainPrediction' package. This package is especially strong in feature evaluation where it contains several variants of Relief algorithm and many impurity based attribute evaluation functions, e.g., Gini, information gain, MDL, and DKM. These methods can be used for feature selection or discretization of numeric attributes. The OrdEval algorithm and its visualization is used for evaluation of data sets with ordinal features and class, enabling analysis according to the Kano model of customer satisfaction. Several algorithms support parallel multithreaded execution via OpenMP. The top-level documentation is reachable through ?CORElearn. 2025-04-22
r-cord public Partition data points (variables) into communities/clusters, similar to clustering algorithms, such as k-means and hierarchical clustering. This package implements a clustering algorithm based on a new metric CORD, defined for high dimensional parametric or semi-parametric distributions. Read http://arxiv.org/abs/1508.01939 for more details. 2025-04-22
r-coranking public Calculates the co-ranking matrix to assess the quality of a dimensionality reduction. 2025-04-22
r-coop public Fast implementations of the co-operations: covariance, correlation, and cosine similarity. The implementations are fast and memory-efficient and their use is resolved automatically based on the input data, handled by R's S3 methods. Full descriptions of the algorithms and benchmarks are available in the package vignettes. 2025-04-22
r-contfrac public Various utilities for evaluating continued fractions. 2025-04-22
r-coneproj public Routines doing cone projection and quadratic programming, as well as doing estimation and inference for constrained parametric regression and shape-restricted regression problems. See Mary C. Meyer (2013)<doi:10.1080/03610918.2012.659820> for more details. 2025-04-22
r-concreg public Implements concordance regression which can be used to estimate generalized odds of concordance. Can be used for non- and semi-parametric survival analysis with non-proportional hazards, for binary and for continuous outcome data. 2025-04-22
r-conconpiwifun public Continuous convex piecewise linear (ccpl) resp. quadratic (ccpq) functions can be implemented with sorted breakpoints and slopes. This includes functions that are ccpl (resp. ccpq) on a convex set (i.e. an interval or a point) and infinite out of the domain. These functions can be very useful for a large class of optimisation problems. Efficient manipulation (such as log(N) insertion) of such data structure is obtained with map standard template library of C++ (that hides balanced trees). This package is a wrapper on such a class based on Rcpp modules. 2025-04-22

© 2025 Anaconda, Inc. All Rights Reserved. (v4.2.2) Legal | Privacy Policy