About Anaconda Help Download Anaconda

r_test / packages

Package Name Access Summary Updated
r-mole public Model for simulating language evolution in terms of cultural evolution (Smith & Kirby (2008) <DOI:10.1098/rstb.2008.0145>; Deacon 1997). The focus is on the emergence of argument-marking systems (Dowty (1991) <DOI:10.1353/lan.1991.0021>, Van Valin 1999, Dryer 2002, Lestrade 2015a), i.e. noun marking (Aristar (1997) <DOI:10.1075/sl.21.2.04ari>, Lestrade (2010) <DOI:10.7282/T3ZG6R4S>), person indexing (Ariel 1999, Dahl (2000) <DOI:10.1075/fol.7.1.03dah>, Bhat 2004), and word order (Dryer 2013), but extensions are foreseen. Agents start out with a protolanguage (a language without grammar; Bickerton (1981) <DOI:10.17169/langsci.b91.109>, Jackendoff 2002, Arbib (2015) <DOI:10.1002/9781118346136.ch27>) and interact through language games (Steels 1997). Over time, grammatical constructions emerge that may or may not become obligatory (for which the tolerance principle is assumed; Yang 2016). Throughout the simulation, uniformitarianism of principles is assumed (Hopper (1987) <DOI:10.3765/bls.v13i0.1834>, Givon (1995) <DOI:10.1075/z.74>, Croft (2000), Saffran (2001) <DOI:10.1111/1467-8721.01243>, Heine & Kuteva 2007), in which maximal psychological validity is aimed at (Grice (1975) <DOI:10.1057/9780230005853_5>, Levelt 1989, Gaerdenfors 2000) and language representation is usage based (Tomasello 2003, Bybee 2010). In Lestrade (2015b) <DOI:10.15496/publikation-8640>, Lestrade (2015c) <DOI:10.1075/avt.32.08les>, and Lestrade (2016) <DOI:10.17617/2.2248195>), which reported on the results of preliminary versions, this package was announced as WDWTW (for who does what to whom), but for reasons of pronunciation and generalization the title was changed. 2025-04-22
r-mogavs public Functions for exploring the best subsets in regression with a genetic algorithm. The package is much faster than methods relying on complete enumeration, and is suitable for data sets with large number of variables. For more information, see Sinha, Malo & Kuosmanen (2015) <doi:10.1080/10618600.2014.899236>. 2025-04-22
r-modygliani public RMSD and Internal Energy analysis of NAMD and YASARA Molecular Dynamics output files. Allows to comparison of different dynamics per different complexes. Input files have to be ASCII files tab separated. 2025-04-22
r-modules public Provides modules as an organizational unit for source code. Modules enforce to be more rigorous when defining dependencies and have a local search path. They can be used as a sub unit within packages or in scripts. 2025-04-22
r-modturpoint public Turning point method is a method proposed by Choi (1990) <doi:10.2307/2531453> to estimate 50 percent effective dose (ED50) in the study of drug sensitivity. The method has its own advantages for that it can provide robust ED50 estimation. This package contains the modified function of Choi's turning point method. 2025-04-22
r-modtempeff public Fits a Constrained Segmented Distributed Lag regression model to epidemiological time series of mortality, temperature, and other confounders. 2025-04-22
r-modmax public The algorithms implemented here are used to detect the community structure of a network. These algorithms follow different approaches, but are all based on the concept of modularity maximization. 2025-04-22
r-modmarg public Calculate predicted levels and marginal effects, using the delta method to calculate standard errors. This is an R-based version of the 'margins' command from Stata. 2025-04-22
r-modifiedmk public Power of non-parametric Mann-Kendall test and Spearman’s Rho test is highly influenced by serially correlated data. To address this issue, trend tests may be applied on the modified versions of the time series data by Block Bootstrapping (BBS), Prewhitening (PW) , Trend Free Prewhitening (TFPW), Bias Corrected Prewhitening and Variance Correction Approach by calculating effective sample size. Mann, H. B. (1945).<doi:10.1017/CBO9781107415324.004>. Kendall, M. (1975). Multivariate analysis. Charles Griffin&Company Ltd,. sen, P. K. (1968).<doi:10.2307/2285891>. Önöz, B., & Bayazit, M. (2012) <doi:10.1002/hyp.8438>. Hamed, K. H. (2009).<doi:10.1016/j.jhydrol.2009.01.040>. Yue, S., & Wang, C. Y. (2002) <doi:10.1029/2001WR000861>. Yue, S., Pilon, P., Phinney, B., & Cavadias, G. (2002) <doi:10.1002/hyp.1095>. Hamed, K. H., & Ramachandra Rao, A. (1998) <doi:10.1016/S0022-1694(97)00125-X>. Yue, S., & Wang, C. Y. (2004) <doi:10.1023/B:WARM.0000043140.61082.60>. 2025-04-22
r-modeva public Analyses species distribution models and evaluates their performance. It includes functions for performing variation partitioning, calculating several measures of model discrimination and calibration, optimizing prediction thresholds based on a number of criteria, performing multivariate environmental similarity surface (MESS) analysis, and displaying various analytical plots. 2025-04-22
r-modes public Designed with a dual purpose of accurately estimating the mode (or modes) as well as characterizing the modality of data. The specific application area includes complex or mixture distributions particularly in a big data environment. The heterogeneous nature of (big) data may require deep introspective statistical and machine learning techniques, but these statistical tools often fail when applied without first understanding the data. In small datasets, this often isn't a big issue, but when dealing with large scale data analysis or big data thoroughly inspecting each dimension typically yields an O(n^n-1) problem. As such, dealing with big data require an alternative toolkit. This package not only identifies the mode or modes for various data types, it also provides a programmatic way of understanding the modality (i.e. unimodal, bimodal, etc.) of a dataset (whether it's big data or not). See <http://www.sdeevi.com/modes_package> for examples and discussion. 2025-04-22
r-modelwordcloud public Makes a word cloud of text, sized by the frequency of the word, and colored either by user-specified colors or colored by the strength of the coefficient of that text derived from a regression model. 2025-04-22
r-modelobj public A utility library to facilitate the generalization of statistical methods built on a regression framework. Package developers can use 'modelObj' methods to initiate a regression analysis without concern for the details of the regression model and the method to be used to obtain parameter estimates. The specifics of the regression step are left to the user to define when calling the function. The user of a function developed within the 'modelObj' framework creates as input a 'modelObj' that contains the model and the R methods to be used to obtain parameter estimates and to obtain predictions. In this way, a user can easily go from linear to non-linear models within the same package. 2025-04-22
r-modehunt public Given independent and identically distributed observations X(1), ..., X(n) from a density f, provides five methods to perform a multiscale analysis about f as well as the necessary critical values. The first method, introduced in Duembgen and Walther (2008), provides simultaneous confidence statements for the existence and location of local increases (or decreases) of f, based on all intervals I(all) spanned by any two observations X(j), X(k). The second method approximates the latter approach by using only a subset of I(all) and is therefore computationally much more efficient, but asymptotically equivalent. Omitting the additive correction term Gamma in either method offers another two approaches which are more powerful on small scales and less powerful on large scales, however, not asymptotically minimax optimal anymore. Finally, the block procedure is a compromise between adding Gamma or not, having intermediate power properties. The latter is again asymptotically equivalent to the first and was introduced in Rufibach and Walther (2010). 2025-04-22
r-modcmfitr public Fits a modified version of the Connor-Mosimann distribution (Connor & Mosimann (1969)<doi:10.2307/2283728>), a Connor-Mosimann distribution or Dirichlet distribution (e.g. Gelman, Carlin, Stern & Rubin Chapter 3.5 (2004, <ISBN:1-58488-388-X>) to elicited quantiles of a multinomial distribution. Code is also provided to sample from the distributions, generating inputs suitable for a probabilistic sensitivity analysis / Monte Carlo simulation in a decision model. 2025-04-22
r-modalclust public Performs Modal Clustering (MAC) including Hierarchical Modal Clustering (HMAC) along with their parallel implementation (PHMAC) over several processors. These model-based non-parametric clustering techniques can extract clusters in very high dimensions with arbitrary density shapes. By default clustering is performed over several resolutions and the results are summarised as a hierarchical tree. Associated plot functions are also provided. There is a package vignette that provides many examples. This version adheres to CRAN policy of not spanning more than two child processes by default. 2025-04-22
r-mod09nrt public Package for processing downloaded MODIS Surface reflectance Product HDF files. Specifically, MOD09 surface reflectance product files, and the associated MOD03 geolocation files (for MODIS-TERRA). The package will be most effective if the user installs MRTSwath (MODIS Reprojection Tool for swath products; <https://lpdaac.usgs.gov/tools/modis_reprojection_tool_swath>, and adds the directory with the MRTSwath executable to the default R PATH by editing ~/.Rprofile. 2025-04-22
r-mod public Creates modules inline or from a file. Modules can contain any R object and be nested. Each module have their own scope and package "search path" that does not interfere with one another or the user's working environment. 2025-04-22
r-mockr public Provides a means to mock a package function, i.e., temporarily substitute it for testing. Designed as a drop-in replacement for 'testthat::with_mock()', which may break in R 3.4.0 and later. 2025-04-22
r-mockery public The two main functionalities of this package are creating mock objects (functions) and selectively intercepting calls to a given function that originate in some other function. It can be used with any testing framework available for R. Mock objects can be injected with either this package's own stub() function or a similar with_mock() facility present in the 'testthat' package. 2025-04-22
r-mocca public Provides methods to analyze cluster alternatives based on multi-objective optimization of cluster validation indices. For details see Kraus et al. (2011) <doi:10.1007/s00180-011-0244-6>. 2025-04-22
r-mns public An implementation of the mixed neighbourhood selection (MNS) algorithm. The MNS algorithm can be used to estimate multiple related precision matrices. In particular, the motivation behind this work was driven by the need to understand functional connectivity networks across multiple subjects. This package also contains an implementation of a novel algorithm through which to simulate multiple related precision matrices which exhibit properties frequently reported in neuroimaging analysis. 2025-04-22
r-mmwrweek public The first day of any MMWR week is Sunday. MMWR week numbering is sequential beginning with 1 and incrementing with each week to a maximum of 52 or 53. MMWR week #1 of an MMWR year is the first week of the year that has at least four days in the calendar year. This package provides functionality to convert Dates to MMWR day, week, and year and the reverse. 2025-04-22
r-mmtsne public An implementation of multiple maps t-distributed stochastic neighbor embedding (t-SNE). Multiple maps t-SNE is a method for projecting high-dimensional data into several low-dimensional maps such that non-metric space properties are better preserved than they would be by a single map. Multiple maps t-SNE with only one map is equivalent to standard t-SNE. When projecting onto more than one map, multiple maps t-SNE estimates a set of latent weights that allow each point to contribute to one or more maps depending on similarity relationships in the original data. This implementation is a port of the original 'Matlab' library by Laurens van der Maaten. See Van der Maaten and Hinton (2012) <doi:10.1007/s10994-011-5273-4>. This material is based upon work supported by the United States Air Force and Defense Advanced Research Project Agency (DARPA) under Contract No. FA8750-17-C-0020. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the United States Air Force and Defense Advanced Research Projects Agency. Distribution Statement A: Approved for Public Release; Distribution Unlimited. 2025-04-22
r-mmpp public Compute similarities and distances between marked point processes. 2025-04-22

© 2025 Anaconda, Inc. All Rights Reserved. (v4.2.0) Legal | Privacy Policy