About Anaconda Help Download Anaconda

r_test / packages

Package Name Access Summary Updated
r-fastcmprsk public In competing risks regression, the proportional subdistribution hazards (PSH) model is popular for its direct assessment of covariate effects on the cumulative incidence function. This package allows for both penalized and unpenalized PSH regression in linear time using a novel forward-backward scan. Penalties include Ridge, Lease Absolute Shrinkage and Selection Operator (LASSO), Smoothly Clipped Absolute Deviation (SCAD), Minimax Concave Plus (MCP), and elastic net. 2025-04-22
r-fastcmh public A method which uses the Cochran-Mantel-Haenszel test with significant pattern mining to detect intervals in binary genotype data which are significantly associated with a particular phenotype, while accounting for categorical covariates. 2025-04-22
r-fastcluster public This is a two-in-one package which provides interfaces to both R and 'Python'. It implements fast hierarchical, agglomerative clustering routines. Part of the functionality is designed as drop-in replacement for existing routines: linkage() in the 'SciPy' package 'scipy.cluster.hierarchy', hclust() in R's 'stats' package, and the 'flashClust' package. It provides the same functionality with the benefit of a much faster implementation. Moreover, there are memory-saving routines for clustering of vector data, which go beyond what the existing packages provide. For information on how to install the 'Python' files, see the file INSTALL in the source distribution. Based on the present package, Christoph Dalitz also wrote a pure 'C++' interface to 'fastcluster': <http://informatik.hsnr.de/~dalitz/data/hclust>. 2025-04-22
r-fastclime public Provides a method of recovering the precision matrix efficiently and solving for the dantzig selector by applying the parametric simplex method. The computation is based on a linear optimization solver. It also contains a generic LP solver and a parameterized LP solver using parametric simplex method. 2025-04-22
r-fastbandchol public Fast and numerically stable estimation of a covariance matrix by banding the Cholesky factor using a modified Gram-Schmidt algorithm implemented in RcppArmadilo. See <http://stat.umn.edu/~molst029> for details on the algorithm. 2025-04-22
r-fastadaboost public Implements Adaboost based on C++ backend code. This is blazingly fast and especially useful for large, in memory data sets. The package uses decision trees as weak classifiers. Once the classifiers have been trained, they can be used to predict new data. Currently, we support only binary classification tasks. The package implements the Adaboost.M1 algorithm and the real Adaboost(SAMME.R) algorithm. 2025-04-22
r-farver public The encoding of colour can be handled in many different ways, using different colour spaces. As different colour spaces have different uses, efficient conversion between these representations are important. The 'farver' package provides a set of functions that gives access to very fast colour space conversion and comparisons implemented in C++, and offers 100-fold speed improvements over the 'convertColor' function in the 'grDevices' package. 2025-04-22
r-farmtest public Performs robust multiple testing for means in the presence of known and unknown latent factors. It implements a robust procedure to estimate distribution parameters using the Huber's loss function and accounts for strong dependence among coordinates via an approximate factor model. This method is particularly suitable for high dimensional data when there are many variables but only a small number of observations available. Moreover, the method is tailored to cases when the underlying distribution deviates from Gaussian, which is commonly assumed in the literature. Besides the results of hypotheses testing, the estimated underlying factors and diagnostic plots are also output. Multiple comparison correction is done after estimating the proportion of true null hypotheses using the method in Storey (2015) <https://github.com/jdstorey/qvalue>. For detailed description of methods and further references, see the papers on the 'FarmTest' method: Fan et al. (2017) <arXiv:1711.05386> and Zhou et al. (2017) <arXiv:1711.05381>. 2025-04-22
r-far public Modelizations and previsions functions for Functional AutoRegressive processes using nonparametric methods: functional kernel, estimation of the covariance operator in a subspace, ... 2025-04-22
r-fanc public Computes the penalized maximum likelihood estimates of factor loadings and unique variances for various tuning parameters. The pathwise coordinate descent along with EM algorithm is used. This package also includes a new graphical tool which outputs path diagram, goodness-of-fit indices and model selection criteria for each regularization parameter. The user can change the regularization parameter by manipulating scrollbars, which is helpful to find a suitable value of regularization parameter. 2025-04-22
r-famle public Estimate parameters of univariate probability distributions with maximum likelihood and Bayesian methods. 2025-04-22
r-falconx public This is a method for Allele-specific DNA Copy Number profiling for whole-Exome sequencing data. Given the allele-specific coverage and site biases at the variant loci, this program segments the genome into regions of homogeneous allele-specific copy number. It requires, as input, the read counts for each variant allele in a pair of case and control samples, as well as the site biases. For detection of somatic mutations, the case and control samples can be the tumor and normal sample from the same individual. The implemented method is based on the paper: Chen, H., Jiang, Y., Maxwell, K., Nathanson, K. and Zhang, N. (under review). Allele-specific copy number estimation by whole Exome sequencing. 2025-04-22
r-falcon public This is a method for Allele-specific DNA Copy Number Profiling using Next-Generation Sequencing. Given the allele-specific coverage at the variant loci, this program segments the genome into regions of homogeneous allele-specific copy number. It requires, as input, the read counts for each variant allele in a pair of case and control samples. For detection of somatic mutations, the case and control samples can be the tumor and normal sample from the same individual. 2025-04-22
r-factorqr public Package to fit Bayesian quantile regression models that assume a factor structure for at least part of the design matrix. 2025-04-22
r-ezglm public This package implements a simplified version of least squares, and logistic regression for efficiently selecting the significant non-additive interactions between two variables. 2025-04-22
r-extweibquant public It implements the subjectively censored Weibull MLE and censored Weibull mixture methods for the lower quantile estimation. Quantile estimates from these two methods are robust to model misspecification in the lower tail. It also includes functions to evaluation the standard error of the resulting quantile estimates. Also, the methods here can be used to fit the Weibull or Weibull mixture for the Type-I or Type-II right censored data. 2025-04-22
r-extremis public Conducts inference in statistical models for extreme values (de Carvalho et al (2012), <doi:10.1080/03610926.2012.709905>; de Carvalho and Davison (2014), <10.1080/01621459.2013.872651>; Einmahl et al (2016), <doi:10.1111/rssb.12099>). 2025-04-22
r-extradistr public Density, distribution function, quantile function and random generation for a number of univariate and multivariate distributions. This package implements the following distributions: Bernoulli, beta-binomial, beta-negative binomial, beta prime, Bhattacharjee, Birnbaum-Saunders, bivariate normal, bivariate Poisson, categorical, Dirichlet, Dirichlet-multinomial, discrete gamma, discrete Laplace, discrete normal, discrete uniform, discrete Weibull, Frechet, gamma-Poisson, generalized extreme value, Gompertz, generalized Pareto, Gumbel, half-Cauchy, half-normal, half-t, Huber density, inverse chi-squared, inverse-gamma, Kumaraswamy, Laplace, location-scale t, logarithmic, Lomax, multivariate hypergeometric, multinomial, negative hypergeometric, non-standard beta, normal mixture, Poisson mixture, Pareto, power, reparametrized beta, Rayleigh, shifted Gompertz, Skellam, slash, triangular, truncated binomial, truncated normal, truncated Poisson, Tukey lambda, Wald, zero-inflated binomial, zero-inflated negative binomial, zero-inflated Poisson. 2025-04-22
r-expperm public A set of functions for computing expected permutation matrices given a matrix of likelihoods for each individual assignment. It has been written to accompany the forthcoming paper 'Computing expectations and marginal likelihoods for permutations'. Publication details will be updated as soon as they are finalized. 2025-04-22
r-zic public Provides MCMC algorithms for the analysis of zero-inflated count models. The case of stochastic search variable selection (SVS) is also considered. All MCMC samplers are coded in C++ for improved efficiency. A data set considering the demand for health care is provided. 2025-04-22
r-ypinterimtesting public For any spending function specified by the user, this package provides corresponding boundaries for interim testing using the adaptively weighted log-rank test developed by Yang and Prentice (2010 <doi:10.1111/j.1541-0420.2009.01243.x>). The package uses a re-sampling method to obtain stopping boundaries at the interim looks.The output consists of stopping boundaries and observed values of the test statistics at the interim looks, along with nominal p-values defined as the probability of the test exceeding the specific observed test statistic value or critical value, regardless of the test behavior at other looks. The asymptotic validity of the stopping boundaries is established in Yang (2018 <doi:10.1002/sim.7958>). 2025-04-22
r-yakmor public This is a simple wrapper for the yakmo K-Means library (developed by Naoki Yoshinaga, see http://www.tkl.iis.u-tokyo.ac.jp/~ynaga/yakmo/). It performs fast and robust (orthogonal) K-Means. 2025-04-22
r-yaimpute public Performs nearest neighbor-based imputation using one or more alternative approaches to processing multivariate data. These include methods based on canonical correlation analysis, canonical correspondence analysis, and a multivariate adaptation of the random forest classification and regression techniques of Leo Breiman and Adele Cutler. Additional methods are also offered. The package includes functions for comparing the results from running alternative techniques, detecting imputation targets that are notably distant from reference observations, detecting and correcting for bias, bootstrapping and building ensemble imputations, and mapping results. 2025-04-22
r-xyz public High dimensional interaction search by brute force requires a quadratic computational cost in the number of variables. The xyz algorithm provably finds strong interactions in almost linear time. For details of the algorithm see: G. Thanei, N. Meinshausen and R. Shah (2016). The xyz algorithm for fast interaction search in high-dimensional data <https://arxiv.org/pdf/1610.05108v1.pdf>. 2025-04-22
r-xtensor public The 'xtensor' C++ library for numerical analysis with multi-dimensional array expressions is provided as a header-only C++14 library. It offers an extensible expression system enabling lazy broadcasting; an API following the idioms of the C++ standard library; and tools to manipulate array expressions and build upon 'xtensor'. 2025-04-22

© 2025 Anaconda, Inc. All Rights Reserved. (v4.2.0) Legal | Privacy Policy