About Anaconda Help Download Anaconda

r_test / packages

Package Name Access Summary Updated
r-ssd public ssd calculates the sample size needed to detect the differences between two sets of unordered categorical data. 2025-04-22
r-sscor public Provides the spatial sign correlation and the two-stage spatial sign correlation as well as a one-sample test for the correlation coefficient. 2025-04-22
r-ssbtools public Functions used by other packages from Statistics Norway are gathered. General data manipulation functions, and functions for hierarchical computations are included. The hierarchy specification functions are useful within statistical disclosure control. 2025-04-22
r-ssanv public A set of functions to calculate sample size for two-sample difference in means tests. Does adjustments for either nonadherence or variability that comes from using data to estimate parameters. 2025-04-22
r-srttools public Srt file is a common subtitle format for videos, it contains subtitle and when the subtitle showed. This package is for align time of srt file, and also change color, style and position of subtitle in videos, the srt file will be read as a vector into R, and can be write into srt file after modified using this package. 2025-04-22
r-srda public Sparse redundancy analysis for high dimensional (biomedical) data. Directional multivariate analysis to express the maximum variance in the predicted data set by a linear combination of variables of the predictive data set. Implemented in a partial least squares framework, for more details see Csala et al. (2017) <doi:10.1093/bioinformatics/btx374>. 2025-04-22
r-srcs public Implementation of the SRCS method for a color-based visualization of the results of multiple pairwise tests on a large number of problem configurations, proposed in: I.G. del Amo, D.A. Pelta. SRCS: a technique for comparing multiple algorithms under several factors in dynamic optimization problems. In: E. Alba, A. Nakib, P. Siarry (Eds.), Metaheuristics for Dynamic Optimization. Series: Studies in Computational Intelligence 433, Springer, Berlin/Heidelberg, 2012. 2025-04-22
r-sra public This package (sra) provides a set of tools to analyse artificial-selection response datasets. The data typically feature for several generations the average value of a trait in a population, the variance of the trait, the population size and the average value of the parents that were chosen to breed. Sra implements two families of models aiming at describing the dynamics of the genetic architecture of the trait during the selection response. The first family relies on purely descriptive (phenomenological) models, based on an autoregressive framework. The second family provides different mechanistic models, accounting e.g. for inbreeding, mutations, genetic and environmental canalization, or epistasis. The parameters underlying the dynamics of the time series are estimated by maximum likelihood. The sra package thus provides (i) a wrapper for the R functions mle() and optim() aiming at fitting in a convenient way a predetermined set of models, and (ii) some functions to plot and analyze the output of the models. 2025-04-22
r-ssh.utils public This package provides utility functions for system command execution, both locally and remotely using ssh/scp. The command output is captured and provided to the caller. This functionality is intended to streamline calling shell commands from R, retrieving and using their output, while instrumenting the calls with appropriate error handling. NOTE: this first version is limited to unix with local and remote systems running bash as the default shell. 2025-04-22
r-flamingos public Provides a variety of original and flexible user-friendly statistical latent variable models for the simultaneous clustering and segmentation of heterogeneous functional data (i.e time series, or more generally longitudinal data, fitted by unsupervised algorithms, including EM algorithms. Functional Latent Data Models for Clustering heterogeneous curves ('FLaMingos') are originally introduced and written in 'Matlab' by Faicel Chamroukhi <https://github.com/fchamroukhi?utf8=?&tab=repositories&q=mix&type=public&language=matlab>. The references are mainly the following ones. Chamroukhi F. (2010) <https://chamroukhi.com/FChamroukhi-PhD.pdf>. Chamroukhi F., Same A., Govaert, G. and Aknin P. (2010) <doi:10.1016/j.neucom.2009.12.023>. Chamroukhi F., Same A., Aknin P. and Govaert G. (2011). <doi:10.1109/IJCNN.2011.6033590>. Same A., Chamroukhi F., Govaert G. and Aknin, P. (2011) <doi:10.1007/s11634-011-0096-5>. Chamroukhi F., and Glotin H. (2012) <doi:10.1109/IJCNN.2012.6252818>. Chamroukhi F., Glotin H. and Same A. (2013) <doi:10.1016/j.neucom.2012.10.030>. Chamroukhi F. (2015) <https://chamroukhi.com/FChamroukhi-HDR.pdf>. Chamroukhi F. and Nguyen H-D. (2019) <doi:10.1002/widm.1298>. 2025-04-22
r-flam public Implements the fused lasso additive model as proposed in Petersen, A., Witten, D., and Simon, N. (2016). Fused Lasso Additive Model. Journal of Computational and Graphical Statistics, 25(4): 1005-1025. 2025-04-22
r-fixest public Fast and user-friendly estimation of econometric models with multiple fixed-effects. Includes ordinary least squares (OLS), generalized linear models (GLM) and the negative binomial. The core of the package is based on optimized parallel C++ code, scaling especially well for large data sets. The method to obtain the fixed-effects coefficients is based on Berge (2018) <https://wwwen.uni.lu/content/download/110162/1299525/file/2018_13>. Further provides tools to export and view the results of several estimations with intuitive design to cluster the standard-errors. 2025-04-22
r-fishmod public Fits models to catch and effort data. Single-species models are 1) delta log-normal, 2) Tweedie, or 3) Poisson-gamma (G)LMs. 2025-04-22
r-fishical public FisHiCal integrates Hi-C and FISH data, offering a modular and easy-to-use tool for chromosomal spatial analysis. 2025-04-22
r-fire public The algorithm assigns rareness/ outlierness score to every sample in voluminous datasets. The algorithm makes multiple estimations of the proximity between a pair of samples, in low-dimensional spaces. To compute proximity, FiRE uses Sketching, a variant of locality sensitive hashing. For more details: Jindal, A., Gupta, P., Jayadeva and Sengupta, D., 2018. Discovery of rare cells from voluminous single cell expression data. Nature Communications, 9(1), p.4719. <doi:10.1038/s41467-018-07234-6>. 2025-04-22
r-fingerprint public Functions to manipulate binary fingerprints of arbitrary length. A fingerprint is represented by an object of S4 class 'fingerprint' which is internally represented a vector of integers, such that each element represents the position in the fingerprint that is set to 1. The bitwise logical functions in R are overridden so that they can be used directly with 'fingerprint' objects. A number of distance metrics are also available (many contributed by Michael Fadock). Fingerprints can be converted to Euclidean vectors (i.e., points on the unit hypersphere) and can also be folded using OR. Arbitrary fingerprint formats can be handled via line handlers. Currently handlers are provided for CDK, MOE and BCI fingerprint data. 2025-04-22
r-filelock public Place an exclusive or shared lock on a file. It uses 'LockFile' on Windows and 'fcntl' locks on Unix-like systems. 2025-04-22
r-filehash public Implements a simple key-value style database where character string keys are associated with data values that are stored on the disk. A simple interface is provided for inserting, retrieving, and deleting data from the database. Utilities are provided that allow 'filehash' databases to be treated much like environments and lists are already used in R. These utilities are provided to encourage interactive and exploratory analysis on large datasets. Three different file formats for representing the database are currently available and new formats can easily be incorporated by third parties for use in the 'filehash' framework. 2025-04-22
r-fhdi public Impute general multivariate missing data with the fractional hot deck imputation based on Jaekwang Kim (2011) <doi:10.1093/biomet/asq073>. 2025-04-22
r-fgsg public Implement algorithms for feature grouping and selection over an undirected graph, solves problems like graph fused lasso, graph OSCAR and so on. 2025-04-22
r-fftwtools public Provides a wrapper for several 'FFTW' functions. This package provides access to the two-dimensional 'FFT', the multivariate 'FFT', and the one-dimensional real to complex 'FFT' using the 'FFTW3' library. The package includes the functions fftw() and mvfftw() which are designed to mimic the functionality of the R functions fft() and mvfft(). The 'FFT' functions have a parameter that allows them to not return the redundant complex conjugate when the input is real data. 2025-04-22
r-ffstream public An implementation of the adaptive forgetting factor scheme described in Bodenham and Adams (2016) <doi:10.1007/s11222-016-9684-8> which adaptively estimates the mean and variance of a stream in order to detect multiple changepoints in streaming data. The implementation is in C++ and uses Rcpp. Additionally, implementations of the fixed forgetting factor scheme from the same paper, as well as the classic CUSUM and EWMA methods, are included. 2025-04-22
r-ff public The ff package provides data structures that are stored on disk but behave (almost) as if they were in RAM by transparently mapping only a section (pagesize) in main memory - the effective virtual memory consumption per ff object. ff supports R's standard atomic data types 'double', 'logical', 'raw' and 'integer' and non-standard atomic types boolean (1 bit), quad (2 bit unsigned), nibble (4 bit unsigned), byte (1 byte signed with NAs), ubyte (1 byte unsigned), short (2 byte signed with NAs), ushort (2 byte unsigned), single (4 byte float with NAs). For example 'quad' allows efficient storage of genomic data as an 'A','T','G','C' factor. The unsigned types support 'circular' arithmetic. There is also support for close-to-atomic types 'factor', 'ordered', 'POSIXct', 'Date' and custom close-to-atomic types. ff not only has native C-support for vectors, matrices and arrays with flexible dimorder (major column-order, major row-order and generalizations for arrays). There is also a ffdf class not unlike data.frames and import/export filters for csv files. ff objects store raw data in binary flat files in native encoding, and complement this with metadata stored in R as physical and virtual attributes. ff objects have well-defined hybrid copying semantics, which gives rise to certain performance improvements through virtualization. ff objects can be stored and reopened across R sessions. ff files can be shared by multiple ff R objects (using different data en/de-coding schemes) in the same process or from multiple R processes to exploit parallelism. A wide choice of finalizer options allows to work with 'permanent' files as well as creating/removing 'temporary' ff files completely transparent to the user. On certain OS/Filesystem combinations, creating the ff files works without notable delay thanks to using sparse file allocation. Several access optimization techniques such as Hybrid Index Preprocessing and Virtualization are implemented to achieve good performance even with large datasets, for example virtual matrix transpose without touching a single byte on disk. Further, to reduce disk I/O, 'logicals' and non-standard data types get stored native and compact on binary flat files i.e. logicals take up exactly 2 bits to represent TRUE, FALSE and NA. Beyond basic access functions, the ff package also provides compatibility functions that facilitate writing code for ff and ram objects and support for batch processing on ff objects (e.g. as.ram, as.ff, ffapply). ff interfaces closely with functionality from package 'bit': chunked looping, fast bit operations and coercions between different objects that can store subscript information ('bit', 'bitwhich', ff 'boolean', ri range index, hi hybrid index). This allows to work interactively with selections of large datasets and quickly modify selection criteria. Further high-performance enhancements can be made available upon request. 2025-04-22
r-fenmlm public Efficient estimation of maximum likelihood models with multiple fixed-effects. Standard-errors can easily and flexibly be clustered and estimations exported. 2025-04-22
r-fechner public Functions and example datasets for Fechnerian scaling of discrete object sets. User can compute Fechnerian distances among objects representing subjective dissimilarities, and other related information. See package?fechner for an overview. 2025-04-22

© 2025 Anaconda, Inc. All Rights Reserved. (v4.2.0) Legal | Privacy Policy