CMD + K

r-qgam

Community

Smooth additive quantile regression models, fitted using the methods of Fasiolo et al. (2017) <arXiv:1707.03307>. Differently from 'quantreg', the smoothing parameters are estimated automatically by marginal loss minimization, while the regression coefficients are estimated using either PIRLS or Newton algorithm. The learning rate is determined so that the Bayesian credible intervals of the estimated effects have approximately the correct coverage. The main function is qgam() which is similar to gam() in 'mgcv', but fits non-parametric quantile regression models.

Installation

To install this package, run one of the following:

Conda
$conda install r_test::r-qgam

Usage Tracking

1.3.0
1 / 8 versions selected
Total downloads: 0

About

Summary

Smooth additive quantile regression models, fitted using the methods of Fasiolo et al. (2017) <arXiv:1707.03307>. Differently from 'quantreg', the smoothing parameters are estimated automatically by marginal loss minimization, while the regression coefficients are estimated using either PIRLS or Newton algorithm. The learning rate is determined so that the Bayesian credible intervals of the estimated effects have approximately the correct coverage. The main function is qgam() which is similar to gam() in 'mgcv', but fits non-parametric quantile regression models.

Information Last Updated

Apr 22, 2025 at 15:32

License

GPL-2

Total Downloads

2

Platforms

Linux 64 Version: 1.3.0
Win 64 Version: 1.3.0
macOS 64 Version: 1.3.0