About Anaconda Help Download Anaconda

Clustering is unsupervised and exploratory in nature. Yet, it can be performed through penalized regression with grouping pursuit. In this package, we provide two algorithms for fitting the penalized regression-based clustering (PRclust) with non-convex grouping penalties, such as group truncated lasso, MCP and SCAD. One algorithm is based on quadratic penalty and difference convex method. Another algorithm is based on difference convex and ADMM, called DC-ADD, which is more efficient. Generalized cross validation and stability based method were provided to select the tuning parameters. Rand index, adjusted Rand index and Jaccard index were provided to estimate the agreement between estimated cluster memberships and the truth.

Type Size Name Uploaded Downloads Labels
conda 133.4 kB | win-64/r-prclust-1.3-r36h796a38f_0.tar.bz2  5 years and 4 months ago 1 main
conda 119.1 kB | osx-64/r-prclust-1.3-r36h466af19_0.tar.bz2  5 years and 4 months ago 1 main
conda 127.2 kB | linux-64/r-prclust-1.3-r36h29659fb_0.tar.bz2  5 years and 4 months ago 1 main

© 2025 Anaconda, Inc. All Rights Reserved. (v4.0.7) Legal | Privacy Policy