CMD + K

r-glmaspu

Community

Several tests for high dimensional generalized linear models have been proposed recently. In this package, we implemented a new test called adaptive sum of powered score (aSPU) for high dimensional generalized linear models, which is often more powerful than the existing methods in a wide scenarios. We also implemented permutation based version of several existing methods for research purpose. We recommend users use the aSPU test for their real testing problem. You can learn more about the tests implemented in the package via the following papers: 1. Pan, W., Kim, J., Zhang, Y., Shen, X. and Wei, P. (2014) <DOI:10.1534/genetics.114.165035> A powerful and adaptive association test for rare variants, Genetics, 197(4). 2. Guo, B., and Chen, S. X. (2016) <DOI:10.1111/rssb.12152>. Tests for high dimensional generalized linear models. Journal of the Royal Statistical Society: Series B. 3. Goeman, J. J., Van Houwelingen, H. C., and Finos, L. (2011) <DOI:10.1093/biomet/asr016>. Testing against a high-dimensional alternative in the generalized linear model: asymptotic type I error control. Biometrika, 98(2).

Installation

To install this package, run one of the following:

Conda
$conda install r_test::r-glmaspu

Usage Tracking

1.0
1 / 8 versions selected
Total downloads: 0

About

Summary

Several tests for high dimensional generalized linear models have been proposed recently. In this package, we implemented a new test called adaptive sum of powered score (aSPU) for high dimensional generalized linear models, which is often more powerful than the existing methods in a wide scenarios. We also implemented permutation based version of several existing methods for research purpose. We recommend users use the aSPU test for their real testing problem. You can learn more about the tests implemented in the package via the following papers: 1. Pan, W., Kim, J., Zhang, Y., Shen, X. and Wei, P. (2014) <DOI:10.1534/genetics.114.165035> A powerful and adaptive association test for rare variants, Genetics, 197(4). 2. Guo, B., and Chen, S. X. (2016) <DOI:10.1111/rssb.12152>. Tests for high dimensional generalized linear models. Journal of the Royal Statistical Society: Series B. 3. Goeman, J. J., Van Houwelingen, H. C., and Finos, L. (2011) <DOI:10.1093/biomet/asr016>. Testing against a high-dimensional alternative in the generalized linear model: asymptotic type I error control. Biometrika, 98(2).

Information Last Updated

Apr 22, 2025 at 15:32

License

GPL-2

Total Downloads

3

Platforms

Linux 64 Version: 1.0
Win 64 Version: 1.0
macOS 64 Version: 1.0