r-chillr
|
public |
The phenology of plants (i.e. the timing of their annual life phases) depends on climatic cues. For temperate trees and many other plants, spring phases, such as leaf emergence and flowering, have been found to result from the effects of both cool (chilling) conditions and heat. Fruit tree scientists (pomologists) have developed some metrics to quantify chilling and heat (e.g. see Luedeling (2012) <doi:10.1016/j.scienta.2012.07.011>). 'chillR' contains functions for processing temperature records into chilling (Chilling Hours, Utah Chill Units and Chill Portions) and heat units (Growing Degree Hours). Regarding chilling metrics, Chill Portions are often considered the most promising, but they are difficult to calculate. This package makes it easy. 'chillR' also contains procedures for conducting a PLS analysis relating phenological dates (e.g. bloom dates) to either mean temperatures or mean chill and heat accumulation rates, based on long-term weather and phenology records (Luedeling and Gassner (2012) <doi:10.1016/j.agrformet.2011.10.020>). As of version 0.65, it also includes functions for generating weather scenarios with a weather generator, for conducting climate change analyses for temperature-based climatic metrics and for plotting results from such analyses. Since version 0.70, 'chillR' contains a function for interpolating hourly temperature records.
|
2025-03-25 |
r-chngpt
|
public |
Threshold regression models are also called two-phase regression, broken-stick regression, split-point regression, structural change models, and regression kink models, with and without interaction terms. Methods for both continuous and discontinuous threshold models are included, but the support for the former is much greater. This package is described in Fong, Huang, Gilbert and Permar (2017) <DOI:10.1186/s12859-017-1863-x> and the package vignette.
|
2025-03-25 |
r-changepoint.np
|
public |
Implements the multiple changepoint algorithm PELT with a nonparametric cost function based on the empirical distribution of the data. This package extends the changepoint package (see Killick, R and Eckley, I (2014) <doi:10.18637/jss.v058.i03> ).
|
2025-03-25 |
r-cellwise
|
public |
Tools for detecting cellwise outliers and robust methods to analyze data which may contain them. Contains the implementation of the algorithms described in Rousseeuw and Van den Bossche (2018) <doi:10.1080/00401706.2017.1340909> (open access) Hubert et al. (2019) <doi:10.1080/00401706.2018.1562989> (open access), Raymaekers and Rousseeuw (2021) <doi:10.1080/00401706.2019.1677270> (open access), Raymaekers and Rousseeuw (2021) <doi:10.1007/s10994-021-05960-5> (open access), Raymaekers and Rousseeuw (2021) <doi:10.52933/jdssv.v1i3.18> (open access), Raymaekers and Rousseeuw (2022) <arXiv:2207.13493> (open access) Rousseeuw (2022) <doi:10.1016/j.ecosta.2023.01.007> (open access). Examples can be found in the vignettes: "DDC_examples", "MacroPCA_examples", "wrap_examples", "transfo_examples", "DI_examples", "cellMCD_examples" , "Correspondence_analysis_examples", and "cellwise_weights_examples".
|
2025-03-25 |
r-cdm
|
public |
Functions for cognitive diagnosis modeling and multidimensional item response modeling for dichotomous and polytomous item responses. This package enables the estimation of the DINA and DINO model (Junker & Sijtsma, 2001, <doi:10.1177/01466210122032064>), the multiple group (polytomous) GDINA model (de la Torre, 2011, <doi:10.1007/s11336-011-9207-7>), the multiple choice DINA model (de la Torre, 2009, <doi:10.1177/0146621608320523>), the general diagnostic model (GDM; von Davier, 2008, <doi:10.1348/000711007X193957>), the structured latent class model (SLCA; Formann, 1992, <doi:10.1080/01621459.1992.10475229>) and regularized latent class analysis (Chen, Li, Liu, & Ying, 2017, <doi:10.1007/s11336-016-9545-6>). See George, Robitzsch, Kiefer, Gross, and Uenlue (2017) <doi:10.18637/jss.v074.i02> or Robitzsch and George (2019, <doi:10.1007/978-3-030-05584-4_26>) for further details on estimation and the package structure. For tutorials on how to use the CDM package see George and Robitzsch (2015, <doi:10.20982/tqmp.11.3.p189>) as well as Ravand and Robitzsch (2015).
|
2025-03-25 |
r-cba
|
public |
Implements clustering techniques such as Proximus and Rock, utility functions for efficient computation of cross distances and data manipulation.
|
2025-03-25 |
r-castor
|
public |
Efficient phylogenetic analyses on massive phylogenies comprising up to millions of tips. Functions include pruning, rerooting, calculation of most-recent common ancestors, calculating distances from the tree root and calculating pairwise distances. Calculation of phylogenetic signal and mean trait depth (trait conservatism), ancestral state reconstruction and hidden character prediction of discrete characters, simulating and fitting models of trait evolution, fitting and simulating diversification models, dating trees, comparing trees, and reading/writing trees in Newick format. Citation: Louca, Stilianos and Doebeli, Michael (2017) <doi:10.1093/bioinformatics/btx701>.
|
2025-03-25 |
r-carat
|
public |
Provides functions and command-line user interface to generate allocation sequence by covariate-adaptive randomization for clinical trials. The package currently supports six covariate-adaptive randomization procedures. Three hypothesis testing methods that are valid and robust under covariate-adaptive randomization are also available in the package to facilitate the inference for treatment effect under the included randomization procedures. Additionally, the package provides comprehensive and efficient tools to allow one to evaluate and compare the performance of randomization procedures and tests based on various criteria. See Ma W, Ye X, Tu F, and Hu F (2023) <doi: 10.18637/jss.v107.i02> for details.
|
2025-03-25 |
r-cartography
|
public |
Create and integrate maps in your R workflow. This package helps to design cartographic representations such as proportional symbols, choropleth, typology, flows or discontinuities maps. It also offers several features that improve the graphic presentation of maps, for instance, map palettes, layout elements (scale, north arrow, title...), labels or legends. See Giraud and Lambert (2017) <doi:10.1007/978-3-319-57336-6_13>.
|
2025-03-25 |
r-carbayesst
|
public |
Implements a class of univariate and multivariate spatio-temporal generalised linear mixed models for areal unit data, with inference in a Bayesian setting using Markov chain Monte Carlo (MCMC) simulation. The response variable can be binomial, Gaussian, or Poisson, but for some models only the binomial and Poisson data likelihoods are available. The spatio-temporal autocorrelation is modelled by random effects, which are assigned conditional autoregressive (CAR) style prior distributions. A number of different random effects structures are available, including models similar to Rushworth et al. (2014) <doi:10.1016/j.sste.2014.05.001>. Full details are given in the vignette accompanying this package. The creation and development of this package was supported by the Engineering and Physical Sciences Research Council (EPSRC) grants EP/J017442/1 and EP/T004878/1 and the Medical Research Council (MRC) grant MR/L022184/1.
|
2025-03-25 |
r-carbayes
|
public |
Implements a class of univariate and multivariate spatial generalised linear mixed models for areal unit data, with inference in a Bayesian setting using Markov chain Monte Carlo (MCMC) simulation using a single or multiple Markov chains. The response variable can be binomial, Gaussian, multinomial, Poisson or zero-inflated Poisson (ZIP), and spatial autocorrelation is modelled by a set of random effects that are assigned a conditional autoregressive (CAR) prior distribution. A number of different models are available for univariate spatial data, including models with no random effects as well as random effects modelled by different types of CAR prior, including the BYM model (Besag et al., 1991, <doi:10.1007/BF00116466>) and Leroux model (Leroux et al., 2000, <doi:10.1007/978-1-4612-1284-3_4>). Additionally, a multivariate CAR (MCAR) model for multivariate spatial data is available, as is a two-level hierarchical model for modelling data relating to individuals within areas. Full details are given in the vignette accompanying this package. The initial creation of this package was supported by the Economic and Social Research Council (ESRC) grant RES-000-22-4256, and on-going development has been supported by the Engineering and Physical Science Research Council (EPSRC) grant EP/J017442/1, ESRC grant ES/K006460/1, Innovate UK / Natural Environment Research Council (NERC) grant NE/N007352/1 and the TB Alliance.
|
2025-03-25 |
r-calculus
|
public |
Efficient C++ optimized functions for numerical and symbolic calculus as described in Guidotti (2022) <doi:10.18637/jss.v104.i05>. It includes basic arithmetic, tensor calculus, Einstein summing convention, fast computation of the Levi-Civita symbol and generalized Kronecker delta, Taylor series expansion, multivariate Hermite polynomials, high-order derivatives, ordinary differential equations, differential operators (Gradient, Jacobian, Hessian, Divergence, Curl, Laplacian) and numerical integration in arbitrary orthogonal coordinate systems: cartesian, polar, spherical, cylindrical, parabolic or user defined by custom scale factors.
|
2025-03-25 |
r-c50
|
public |
C5.0 decision trees and rule-based models for pattern recognition that extend the work of Quinlan (1993, ISBN:1-55860-238-0).
|
2025-03-25 |
r-bssm
|
public |
Efficient methods for Bayesian inference of state space models via Markov chain Monte Carlo (MCMC) based on parallel importance sampling type weighted estimators (Vihola, Helske, and Franks, 2020, <doi:10.1111/sjos.12492>), particle MCMC, and its delayed acceptance version. Gaussian, Poisson, binomial, negative binomial, and Gamma observation densities and basic stochastic volatility models with linear-Gaussian state dynamics, as well as general non-linear Gaussian models and discretised diffusion models are supported. See Helske and Vihola (2021, <doi:10.32614/RJ-2021-103>) for details.
|
2025-03-25 |
r-bspm
|
public |
Enables binary package installations on Linux distributions. Provides functions to manage packages via the distribution's package manager. Also provides transparent integration with R's install.packages() and a fallback mechanism. When installed as a system package, interacts with the system's package manager without requiring administrative privileges via an integrated D-Bus service; otherwise, uses sudo. Currently, the following backends are supported: DNF, APT, ALPM.
|
2025-03-25 |
r-broman
|
public |
Miscellaneous R functions, including functions related to graphics (mostly for base graphics), permutation tests, running mean/median, and general utilities.
|
2025-03-25 |
r-box
|
public |
A modern module system for R. Organise code into hierarchical, composable, reusable modules, and use it effortlessly across projects via a flexible, declarative dependency loading syntax.
|
2025-03-25 |
r-brglm2
|
public |
Estimation and inference from generalized linear models based on various methods for bias reduction and maximum penalized likelihood with powers of the Jeffreys prior as penalty. The 'brglmFit' fitting method can achieve reduction of estimation bias by solving either the mean bias-reducing adjusted score equations in Firth (1993) <doi:10.1093/biomet/80.1.27> and Kosmidis and Firth (2009) <doi:10.1093/biomet/asp055>, or the median bias-reduction adjusted score equations in Kenne et al. (2017) <doi:10.1093/biomet/asx046>, or through the direct subtraction of an estimate of the bias of the maximum likelihood estimator from the maximum likelihood estimates as in Cordeiro and McCullagh (1991) <https://www.jstor.org/stable/2345592>. See Kosmidis et al (2020) <doi:10.1007/s11222-019-09860-6> for more details. Estimation in all cases takes place via a quasi Fisher scoring algorithm, and S3 methods for the construction of of confidence intervals for the reduced-bias estimates are provided. In the special case of generalized linear models for binomial and multinomial responses (both ordinal and nominal), the adjusted score approaches to mean and media bias reduction have been found to return estimates with improved frequentist properties, that are also always finite, even in cases where the maximum likelihood estimates are infinite (e.g. complete and quasi-complete separation; see Kosmidis and Firth, 2020 <doi:10.1093/biomet/asaa052>, for a proof for mean bias reduction in logistic regression).
|
2025-03-25 |
r-brmsmargins
|
public |
Calculate Bayesian marginal effects, average marginal effects, and marginal coefficients (also called population averaged coefficients) for models fit using the 'brms' package including fixed effects, mixed effects, and location scale models. These are based on marginal predictions that integrate out random effects if necessary (see for example <doi:10.1186/s12874-015-0046-6> and <doi:10.1111/biom.12707>).
|
2025-03-25 |
r-blorr
|
public |
Tools designed to make it easier for beginner and intermediate users to build and validate binary logistic regression models. Includes bivariate analysis, comprehensive regression output, model fit statistics, variable selection procedures, model validation techniques and a 'shiny' app for interactive model building.
|
2025-03-25 |
r-bmisc
|
public |
These are miscellaneous functions for working with panel data, quantiles, and printing results. For panel data, the package includes functions for making a panel data balanced (that is, dropping missing individuals that have missing observations in any time period), converting id numbers to row numbers, and to treat repeated cross sections as panel data under the assumption of rank invariance. For quantiles, there are functions to make distribution functions from a set of data points (this is particularly useful when a distribution function is created in several steps), to combine distribution functions based on some external weights, and to invert distribution functions. Finally, there are several other miscellaneous functions for obtaining weighted means, weighted distribution functions, and weighted quantiles; to generate summary statistics and their differences for two groups; and to add or drop covariates from formulas.
|
2025-03-25 |
r-bma
|
public |
Package for Bayesian model averaging and variable selection for linear models, generalized linear models and survival models (cox regression).
|
2025-03-25 |
r-blockcv
|
public |
Creating spatially or environmentally separated folds for cross-validation to provide a robust error estimation in spatially structured environments; Investigating and visualising the effective range of spatial autocorrelation in continuous raster covariates and point samples to find an initial realistic distance band to separate training and testing datasets spatially described in Valavi, R. et al. (2019) <doi:10.1111/2041-210X.13107>.
|
2025-03-25 |
r-blavaan
|
public |
Fit a variety of Bayesian latent variable models, including confirmatory factor analysis, structural equation models, and latent growth curve models. References: Merkle & Rosseel (2018) <doi:10.18637/jss.v085.i04>; Merkle et al. (2021) <doi:10.18637/jss.v100.i06>.
|
2025-03-25 |
r-blackbox
|
public |
Performs prediction of a response function from simulated response values, allowing black-box optimization of functions estimated with some error. Includes a simple user interface for such applications, as well as more specialized functions designed to be called by the Migraine software (Rousset and Leblois, 2012 <doi:10.1093/molbev/MSR262>; Leblois et al., 2014 <doi:10.1093/molbev/msu212>; and see URL). The latter functions are used for prediction of likelihood surfaces and implied likelihood ratio confidence intervals, and for exploration of predictor space of the surface. Prediction of the response is based on ordinary Kriging (with residual error) of the input. Estimation of smoothing parameters is performed by generalized cross-validation.
|
2025-03-25 |
r-biwavelet
|
public |
This is a port of the WTC MATLAB package written by Aslak Grinsted and the wavelet program written by Christopher Torrence and Gibert P. Compo. This package can be used to perform univariate and bivariate (cross-wavelet, wavelet coherence, wavelet clustering) analyses.
|
2025-03-25 |
r-bioacoustics
|
public |
Contains all the necessary tools to process audio recordings of various formats (e.g., WAV, WAC, MP3, ZC), filter noisy files, display audio signals, detect and extract automatically acoustic features for further analysis such as classification.
|
2025-03-25 |
r-bipartite
|
public |
Functions to visualise webs and calculate a series of indices commonly used to describe pattern in (ecological) webs. It focuses on webs consisting of only two levels (bipartite), e.g. pollination webs or predator-prey-webs. Visualisation is important to get an idea of what we are actually looking at, while the indices summarise different aspects of the web's topology.
|
2025-03-25 |
r-binsegrcpp
|
public |
Standard template library containers are used to implement an efficient binary segmentation algorithm, which is log-linear on average and quadratic in the worst case.
|
2025-03-25 |
r-bigutilsr
|
public |
Utility functions for large-scale data. For now, package 'bigutilsr' mainly includes functions for outlier detection and unbiased PCA projection.
|
2025-03-25 |
r-bigstatsr
|
public |
Easy-to-use, efficient, flexible and scalable statistical tools. Package bigstatsr provides and uses Filebacked Big Matrices via memory-mapping. It provides for instance matrix operations, Principal Component Analysis, sparse linear supervised models, utility functions and more <doi:10.1093/bioinformatics/bty185>.
|
2025-03-25 |
r-bigsnpr
|
public |
Easy-to-use, efficient, flexible and scalable tools for analyzing massive SNP arrays. Privé et al. (2018) <doi:10.1093/bioinformatics/bty185>.
|
2025-03-25 |
r-bigrquery
|
public |
Easily talk to Google's 'BigQuery' database from R.
|
2025-03-25 |
r-bigsparser
|
public |
Provide a sparse matrix format with data stored on disk, to be used in both R and C++. This is intended for more efficient use of sparse data in C++ and also when parallelizing, since data on disk does not need copying. Only a limited number of features will be implemented. For now, conversion can be performed from a 'dgCMatrix' or a 'dsCMatrix' from R package 'Matrix'. A new compact format is also now available.
|
2025-03-25 |
r-biglasso
|
public |
Extend lasso and elastic-net model fitting for ultra high-dimensional, multi-gigabyte data sets that cannot be loaded into memory. Designed to be more memory- and computation-efficient than existing lasso-fitting packages like 'glmnet' and 'ncvreg', thus allowing the user to analyze big data analysis even on an ordinary laptop.
|
2025-03-25 |
r-bifiesurvey
|
public |
Contains tools for survey statistics (especially in educational assessment) for datasets with replication designs (jackknife, bootstrap, replicate weights; see Kolenikov, 2010; Pfefferman & Rao, 2009a, 2009b, <doi:10.1016/S0169-7161(09)70003-3>, <doi:10.1016/S0169-7161(09)70037-9>); Shao, 1996, <doi:10.1080/02331889708802523>). Descriptive statistics, linear and logistic regression, path models for manifest variables with measurement error correction and two-level hierarchical regressions for weighted samples are included. Statistical inference can be conducted for multiply imputed datasets and nested multiply imputed datasets and is in particularly suited for the analysis of plausible values (for details see George, Oberwimmer & Itzlinger-Bruneforth, 2016; Bruneforth, Oberwimmer & Robitzsch, 2016; Robitzsch, Pham & Yanagida, 2016). The package development was supported by BIFIE (Federal Institute for Educational Research, Innovation and Development of the Austrian School System; Salzburg, Austria).
|
2025-03-25 |
r-bgw
|
public |
Performs statistical estimation and inference-related computations by accessing and executing modified versions of 'Fortran' subroutines originally published in the Association for Computing Machinery (ACM) journal Transactions on Mathematical Software (TOMS) by Bunch, Gay and Welsch (1993) <doi:10.1145/151271.151279>. The acronym 'BGW' (from the authors' last names) will be used when making reference to technical content (e.g., algorithm, methodology) that originally appeared in ACM TOMS. A key feature of BGW is that it exploits the special structure of statistical estimation problems within a trust-region-based optimization approach to produce an estimation algorithm that is much more effective than the usual practice of using optimization methods and codes originally developed for general optimization. The 'bgw' package bundles 'R' wrapper (and related) functions with modified 'Fortran' source code so that it can be compiled and linked in the 'R' environment for fast execution. This version implements a function ('bgw_mle.R') that performs maximum likelihood estimation (MLE) for a user-provided model object that computes probabilities (a.k.a. probability densities). The motivation for producing this initial version is to provide fast, efficient, and reliable MLE for discrete choice models that can be called from the 'Apollo' choice modelling 'R' package: see <http://www.apollochoicemodelling.com>. However, estimation can also be performed in a stand-alone fashion without using 'Apollo' (as shown in simple examples). After this initial version is available on CRAN, an updated version of 'Apollo' (0.2.9) will be made available that automatically loads 'bgw'. Additional development can then occur, including more detailed examples in 'bgw' that refer to 'Apollo.' Note also that BGW capabilities are not limited to MLE, and future extension to other estimators (e.g., nonlinear least squares, generalized method of moments, etc.) is possible. The 'Fortran' code included in 'bgw' was modified by one of the original BGW authors (Bunch) under his rights as confirmed by direct consultation with the ACM Intellectual Property and Rights Manager. See <https://authors.acm.org/author-resources/author-rights>. The main requirement is clear citation of the original publication (see above).
|
2025-03-25 |
r-biclust
|
public |
The main function biclust() provides several algorithms to find biclusters in two-dimensional data: Cheng and Church (2000, ISBN:1-57735-115-0), spectral (2003) <doi:10.1101/gr.648603>, plaid model (2005) <doi:10.1016/j.csda.2004.02.003>, xmotifs (2003) <doi:10.1142/9789812776303_0008> and bimax (2006) <doi:10.1093/bioinformatics/btl060>. In addition, the package provides methods for data preprocessing (normalization and discretisation), visualisation, and validation of bicluster solutions.
|
2025-03-25 |
r-bglr
|
public |
Bayesian Generalized Linear Regression.
|
2025-03-25 |
r-bfast
|
public |
Decomposition of time series into trend, seasonal, and remainder components with methods for detecting and characterizing abrupt changes within the trend and seasonal components. 'BFAST' can be used to analyze different types of satellite image time series and can be applied to other disciplines dealing with seasonal or non-seasonal time series, such as hydrology, climatology, and econometrics. The algorithm can be extended to label detected changes with information on the parameters of the fitted piecewise linear models. 'BFAST' monitoring functionality is described in Verbesselt et al. (2010) <doi:10.1016/j.rse.2009.08.014>. 'BFAST monitor' provides functionality to detect disturbance in near real-time based on 'BFAST'- type models, and is described in Verbesselt et al. (2012) <doi:10.1016/j.rse.2012.02.022>. 'BFAST Lite' approach is a flexible approach that handles missing data without interpolation, and will be described in an upcoming paper. Furthermore, different models can now be used to fit the time series data and detect structural changes (breaks).
|
2025-03-25 |
r-bfpack
|
public |
Implementation of default Bayes factors for testing statistical hypotheses under various statistical models. The package is intended for applied quantitative researchers in the social and behavioral sciences, medical research, and related fields. The Bayes factor tests can be executed for statistical models such as univariate and multivariate normal linear models, correlation analysis, generalized linear models, special cases of linear mixed models, survival models, relational event models. Parameters that can be tested are location parameters (e.g., group means, regression coefficients), variances (e.g., group variances), and measures of association (e.g,. polychoric/polyserial/biserial/tetrachoric/product moments correlations), among others. The statistical underpinnings are described in Mulder and Xin (2019) <DOI:10.1080/00273171.2021.1904809>, Mulder and Gelissen (2019) <DOI:10.1080/02664763.2021.1992360>, Mulder (2016) <DOI:10.1016/j.jmp.2014.09.004>, Mulder and Fox (2019) <DOI:10.1214/18-BA1115>, Mulder and Fox (2013) <DOI:10.1007/s11222-011-9295-3>, Boeing-Messing, van Assen, Hofman, Hoijtink, and Mulder (2017) <DOI:10.1037/met0000116>, Hoijtink, Mulder, van Lissa, and Gu, (2018) <DOI:10.31234/osf.io/v3shc>, Gu, Mulder, and Hoijtink, (2018) <DOI:10.1111/bmsp.12110>, Hoijtink, Gu, and Mulder, (2018) <DOI:10.1111/bmsp.12145>, and Hoijtink, Gu, Mulder, and Rosseel, (2018) <DOI:10.1037/met0000187>. When using the packages, please refer to Mulder et al. (2021) <DOI:10.18637/jss.v100.i18>.
|
2025-03-25 |
r-bessel
|
public |
Computations for Bessel function for complex, real and partly 'mpfr' (arbitrary precision) numbers; notably interfacing TOMS 644; approximations for large arguments, experiments, etc.
|
2025-03-25 |
r-bench
|
public |
Tools to accurately benchmark and analyze execution times for R expressions.
|
2025-03-25 |
r-benchmarking
|
public |
Methods for frontier analysis, Data Envelopment Analysis (DEA), under different technology assumptions (fdh, vrs, drs, crs, irs, add/frh, and fdh+), and using different efficiency measures (input based, output based, hyperbolic graph, additive, super, and directional efficiency). Peers and slacks are available, partial price information can be included, and optimal cost, revenue and profit can be calculated. Evaluation of mergers is also supported. Methods for graphing the technology sets are also included. There is also support for comparative methods based on Stochastic Frontier Analyses (SFA) and for convex nonparametric least squares of convex functions (STONED). In general, the methods can be used to solve not only standard models, but also many other model variants. It complements the book, Bogetoft and Otto, Benchmarking with DEA, SFA, and R, Springer-Verlag, 2011, but can of course also be used as a stand-alone package.
|
2025-03-25 |
r-bekks
|
public |
Methods and tools for estimating, simulating and forecasting of so-called BEKK-models (named after Baba, Engle, Kraft and Kroner) based on the fast Berndt–Hall–Hall–Hausman (BHHH) algorithm described in Hafner and Herwartz (2008) <doi:10.1007/s00184-007-0130-y>.
|
2025-03-25 |
r-bchron
|
public |
Enables quick calibration of radiocarbon dates under various calibration curves (including user generated ones); age-depth modelling as per the algorithm of Haslett and Parnell (2008) <DOI:10.1111/j.1467-9876.2008.00623.x>; Relative sea level rate estimation incorporating time uncertainty in polynomial regression models (Parnell and Gehrels 2015) <DOI:10.1002/9781118452547.ch32>; non-parametric phase modelling via Gaussian mixtures as a means to determine the activity of a site (and as an alternative to the Oxcal function SUM; currently unpublished), and reverse calibration of dates from calibrated into un-calibrated years (also unpublished).
|
2025-03-25 |
r-bbotk
|
public |
Features highly configurable search spaces via the 'paradox' package and optimizes every user-defined objective function. The package includes several optimization algorithms e.g. Random Search, Iterated Racing, Bayesian Optimization (in 'mlr3mbo') and Hyperband (in 'mlr3hyperband'). bbotk is the base package of 'mlr3tuning', 'mlr3fselect' and 'miesmuschel'.
|
2025-03-25 |
r-bcee
|
public |
A Bayesian model averaging approach to causal effect estimation based on the BCEE algorithm. Currently supports binary or continuous exposures and outcomes. For more details, see Talbot et al. (2015) <doi:10.1515/jci-2014-0035> Talbot and Beaudoin (2022) <doi:10.1515/jci-2021-0023>.
|
2025-03-25 |
r-bayestfr
|
public |
Making probabilistic projections of total fertility rate for all countries of the world, using a Bayesian hierarchical model <doi:10.1007/s13524-011-0040-5> <doi:10.18637/jss.v106.i08>. Subnational probabilistic projections are also supported <doi:10.4054/DemRes.2018.38.60>.
|
2025-03-25 |
r-bayesmallows
|
public |
An implementation of the Bayesian version of the Mallows rank model (Vitelli et al., Journal of Machine Learning Research, 2018 <https://jmlr.org/papers/v18/15-481.html>; Crispino et al., Annals of Applied Statistics, 2019 <doi:10.1214/18-AOAS1203>; Sorensen et al., R Journal, 2020 <doi:10.32614/RJ-2020-026>; Stein, PhD Thesis, 2023 <https://eprints.lancs.ac.uk/id/eprint/195759>). Both Metropolis-Hastings and sequential Monte Carlo algorithms for estimating the models are available. Cayley, footrule, Hamming, Kendall, Spearman, and Ulam distances are supported in the models. The rank data to be analyzed can be in the form of complete rankings, top-k rankings, partially missing rankings, as well as consistent and inconsistent pairwise preferences. Several functions for plotting and studying the posterior distributions of parameters are provided. The package also provides functions for estimating the partition function (normalizing constant) of the Mallows rank model, both with the importance sampling algorithm of Vitelli et al. and asymptotic approximation with the IPFP algorithm (Mukherjee, Annals of Statistics, 2016 <doi:10.1214/15-AOS1389>).
|
2025-03-25 |