r-metasens
|
public |
The following methods are implemented to evaluate how sensitive the results of a meta-analysis are to potential bias in meta-analysis and to support Schwarzer et al. (2015) <DOI:10.1007/978-3-319-21416-0>, Chapter 5 'Small-Study Effects in Meta-Analysis': - Copas selection model described in Copas & Shi (2001) <DOI:10.1177/096228020101000402>; - limit meta-analysis by Rücker et al. (2011) <DOI:10.1093/biostatistics/kxq046>; - upper bound for outcome reporting bias by Copas & Jackson (2004) <DOI:10.1111/j.0006-341X.2004.00161.x>; - imputation methods for missing binary data by Gamble & Hollis (2005) <DOI:10.1016/j.jclinepi.2004.09.013> and Higgins et al. (2008) <DOI:10.1177/1740774508091600>; - LFK index test and Doi plot by Furuya-Kanamori et al. (2018) <DOI:10.1097/XEB.0000000000000141>.
|
2025-03-25 |
r-metaplus
|
public |
Performs meta-analysis and meta-regression using standard and robust methods with confidence intervals based on the profile likelihood. Robust methods are based on alternative distributions for the random effect, either the t-distribution (Lee and Thompson, 2008 <doi:10.1002/sim.2897> or Baker and Jackson, 2008 <doi:10.1007/s10729-007-9041-8>) or mixtures of normals (Beath, 2014 <doi:10.1002/jrsm.1114>).
|
2025-03-25 |
r-metan
|
public |
Performs stability analysis of multi-environment trial data using parametric and non-parametric methods. Parametric methods includes Additive Main Effects and Multiplicative Interaction (AMMI) analysis by Gauch (2013) <doi:10.2135/cropsci2013.04.0241>, Ecovalence by Wricke (1965), Genotype plus Genotype-Environment (GGE) biplot analysis by Yan & Kang (2003) <doi:10.1201/9781420040371>, geometric adaptability index by Mohammadi & Amri (2008) <doi:10.1007/s10681-007-9600-6>, joint regression analysis by Eberhart & Russel (1966) <doi:10.2135/cropsci1966.0011183X000600010011x>, genotypic confidence index by Annicchiarico (1992), Murakami & Cruz's (2004) method, power law residuals (POLAR) statistics by Doring et al. (2015) <doi:10.1016/j.fcr.2015.08.005>, scale-adjusted coefficient of variation by Doring & Reckling (2018) <doi:10.1016/j.eja.2018.06.007>, stability variance by Shukla (1972) <doi:10.1038/hdy.1972.87>, weighted average of absolute scores by Olivoto et al. (2019a) <doi:10.2134/agronj2019.03.0220>, and multi-trait stability index by Olivoto et al. (2019b) <doi:10.2134/agronj2019.03.0221>. Non-parametric methods includes superiority index by Lin & Binns (1988) <doi:10.4141/cjps88-018>, nonparametric measures of phenotypic stability by Huehn (1990) <https://link.springer.com/article/10.1007/BF00024241>, TOP third statistic by Fox et al. (1990) <doi:10.1007/BF00040364>. Functions for computing biometrical analysis such as path analysis, canonical correlation, partial correlation, clustering analysis, and tools for inspecting, manipulating, summarizing and plotting typical multi-environment trial data are also provided.
|
2025-03-25 |
r-metacore
|
public |
Create an immutable container holding metadata for the purpose of better enabling programming activities and functionality of other packages within the clinical programming workflow.
|
2025-03-25 |
r-metamisc
|
public |
Facilitate frequentist and Bayesian meta-analysis of diagnosis and prognosis research studies. It includes functions to summarize multiple estimates of prediction model discrimination and calibration performance (Debray et al., 2019) <doi:10.1177/0962280218785504>. It also includes functions to evaluate funnel plot asymmetry (Debray et al., 2018) <doi:10.1002/jrsm.1266>. Finally, the package provides functions for developing multivariable prediction models from datasets with clustering (de Jong et al., 2021) <doi:10.1002/sim.8981>.
|
2025-03-25 |
r-meta
|
public |
User-friendly general package providing standard methods for meta-analysis and supporting Schwarzer, Carpenter, and Rücker <DOI:10.1007/978-3-319-21416-0>, "Meta-Analysis with R" (2015): - common effect and random effects meta-analysis; - several plots (forest, funnel, Galbraith / radial, L'Abbe, Baujat, bubble); - three-level meta-analysis model; - generalised linear mixed model; - Hartung-Knapp method for random effects model; - Kenward-Roger method for random effects model; - prediction interval; - statistical tests for funnel plot asymmetry; - trim-and-fill method to evaluate bias in meta-analysis; - meta-regression; - cumulative meta-analysis and leave-one-out meta-analysis; - import data from 'RevMan 5'; - produce forest plot summarising several (subgroup) meta-analyses.
|
2025-03-25 |
r-mertools
|
public |
Provides methods for extracting results from mixed-effect model objects fit with the 'lme4' package. Allows construction of prediction intervals efficiently from large scale linear and generalized linear mixed-effects models. This method draws from the simulation framework used in the Gelman and Hill (2007) textbook: Data Analysis Using Regression and Multilevel/Hierarchical Models.
|
2025-03-25 |
r-merderiv
|
public |
Compute case-wise and cluster-wise derivative for mixed effects models with respect to fixed effects parameter, random effect (co)variances, and residual variance. This material is partially based on work supported by the National Science Foundation under Grant Number 1460719.
|
2025-03-25 |
r-medicaldata
|
public |
Provides access to well-documented medical datasets for teaching. Featuring several from the Teaching of Statistics in the Health Sciences website <https://www.causeweb.org/tshs/category/dataset/>, a few reconstructed datasets of historical significance in medical research, some reformatted and extended from existing R packages, and some data donations.
|
2025-03-25 |
r-mediation
|
public |
We implement parametric and non parametric mediation analysis. This package performs the methods and suggestions in Imai, Keele and Yamamoto (2010) <DOI:10.1214/10-STS321>, Imai, Keele and Tingley (2010) <DOI:10.1037/a0020761>, Imai, Tingley and Yamamoto (2013) <DOI:10.1111/j.1467-985X.2012.01032.x>, Imai and Yamamoto (2013) <DOI:10.1093/pan/mps040> and Yamamoto (2013) <http://web.mit.edu/teppei/www/research/IVmediate.pdf>. In addition to the estimation of causal mediation effects, the software also allows researchers to conduct sensitivity analysis for certain parametric models.
|
2025-03-25 |
r-mdsr
|
public |
A complement to *Modern Data Science with R*, both the first and second editions (ISBN: 978-0367191498, publisher URL: <https://www.routledge.com/Modern-Data-Science-with-R/Baumer-Kaplan-Horton/p/book/9780367191498>). This package contains data and code to complete exercises and reproduce examples from the text. It also facilitates connections to the SQL database server used in the book. Both editions of the book are supported by this package.
|
2025-03-25 |
r-measurementprotocol
|
public |
Send server-side tracking data from R. The Measurement Protocol version 2 <https://developers.google.com/analytics/devguides/collection/protocol/ga4> allows sending HTTP tracking events from R code.
|
2025-03-25 |
r-mcompanion
|
public |
Provides a class for multi-companion matrices with methods for arithmetic and factorization. A method for generation of multi-companion matrices with prespecified spectral properties is provided, as well as some utilities for periodically correlated and multivariate time series models. See Boshnakov (2002) <doi:10.1016/S0024-3795(01)00475-X> and Boshnakov & Iqelan (2009) <doi:10.1111/j.1467-9892.2009.00617.x>.
|
2025-03-25 |
r-mclogit
|
public |
Provides estimators for multinomial logit models in their conditional logit and baseline logit variants, with or without random effects, with or without overdispersion. Random effects models are estimated using the PQL technique (based on a Laplace approximation) or the MQL technique (based on a Solomon-Cox approximation). Estimates should be treated with caution if the group sizes are small.
|
2025-03-25 |
r-mcomp
|
public |
The 1001 time series from the M-competition (Makridakis et al. 1982) <DOI:10.1002/for.3980010202> and the 3003 time series from the IJF-M3 competition (Makridakis and Hibon, 2000) <DOI:10.1016/S0169-2070(00)00057-1>.
|
2025-03-25 |
r-mcmcvis
|
public |
Performs key functions for MCMC analysis using minimal code - visualizes, manipulates, and summarizes MCMC output. Functions support simple and straightforward subsetting of model parameters within the calls, and produce presentable and 'publication-ready' output. MCMC output may be derived from Bayesian model output fit with 'Stan', 'NIMBLE', 'JAGS', and other software.
|
2025-03-25 |
r-maybe
|
public |
The maybe type represents the possibility of some value or nothing. It is often used instead of throwing an error or returning `NULL`. The advantage of using a maybe type over `NULL` is that it is both composable and requires the developer to explicitly acknowledge the potential absence of a value, helping to avoid the existence of unexpected behaviour.
|
2025-03-25 |
r-mbess
|
public |
Implements methods that are useful in designing research studies and analyzing data, with particular emphasis on methods that are developed for or used within the behavioral, educational, and social sciences (broadly defined). That being said, many of the methods implemented within MBESS are applicable to a wide variety of disciplines. MBESS has a suite of functions for a variety of related topics, such as effect sizes, confidence intervals for effect sizes (including standardized effect sizes and noncentral effect sizes), sample size planning (from the accuracy in parameter estimation [AIPE], power analytic, equivalence, and minimum-risk point estimation perspectives), mediation analysis, various properties of distributions, and a variety of utility functions. MBESS (pronounced 'em-bes') was originally an acronym for 'Methods for the Behavioral, Educational, and Social Sciences,' but MBESS became more general and now contains methods applicable and used in a wide variety of fields and is an orphan acronym, in the sense that what was an acronym is now literally its name. MBESS has greatly benefited from others, see <https://www3.nd.edu/~kkelley/site/MBESS.html> for a detailed list of those that have contributed and other details.
|
2025-03-25 |
r-mbend
|
public |
Bending non-positive-definite (symmetric) matrices to positive-definite, using weighted and unweighted methods. Jorjani, H., et al. (2003) <doi:10.3168/jds.S0022-0302(03)73646-7>. Schaeffer, L. R. (2014) <http://animalbiosciences.uoguelph.ca/~lrs/ELARES/PDforce.pdf>.
|
2025-03-25 |
r-matlib
|
public |
A collection of matrix functions for teaching and learning matrix linear algebra as used in multivariate statistical methods. These functions are mainly for tutorial purposes in learning matrix algebra ideas using R. In some cases, functions are provided for concepts available elsewhere in R, but where the function call or name is not obvious. In other cases, functions are provided to show or demonstrate an algorithm. In addition, a collection of functions are provided for drawing vector diagrams in 2D and 3D.
|
2025-03-25 |
r-matlab2r
|
public |
Allows users familiar with MATLAB to use MATLAB-named functions in R. Several basic MATLAB functions are written in this package to mimic the behavior of their original counterparts, with more to come as this package grows.
|
2025-03-25 |
r-marss
|
public |
The MARSS package provides maximum-likelihood parameter estimation for constrained and unconstrained linear multivariate autoregressive state-space (MARSS) models, including partially deterministic models. MARSS models are a class of dynamic linear model (DLM) and vector autoregressive model (VAR) model. Fitting available via Expectation-Maximization (EM), BFGS (using optim), and 'TMB' (using the 'marssTMB' companion package). Functions are provided for parametric and innovations bootstrapping, Kalman filtering and smoothing, model selection criteria including bootstrap AICb, confidences intervals via the Hessian approximation or bootstrapping, and all conditional residual types. See the user guide for examples of dynamic factor analysis, dynamic linear models, outlier and shock detection, and multivariate AR-p models. Online workshops (lectures, eBook, and computer labs) at <https://atsa-es.github.io/>.
|
2025-03-25 |
r-matchthem
|
public |
Provides essential tools for the pre-processing techniques of matching and weighting multiply imputed datasets. The package includes functions for matching within and across multiply imputed datasets using various methods, estimating weights for units in the imputed datasets using multiple weighting methods, calculating causal effect estimates in each matched or weighted dataset using parametric or non-parametric statistical models, and pooling the resulting estimates according to Rubin's rules (please see <https://journal.r-project.org/archive/2021/RJ-2021-073/> for more details).
|
2025-03-25 |
r-marmap
|
public |
Import xyz data from the NOAA (National Oceanic and Atmospheric Administration, <https://www.noaa.gov>), GEBCO (General Bathymetric Chart of the Oceans, <https://www.gebco.net>) and other sources, plot xyz data to prepare publication-ready figures, analyze xyz data to extract transects, get depth / altitude based on geographical coordinates, or calculate z-constrained least-cost paths.
|
2025-03-25 |
r-marketmatching
|
public |
For a given test market find the best control markets using time series matching and analyze the impact of an intervention. The intervention could be a marketing event or some other local business tactic that is being tested. The workflow implemented in the Market Matching package utilizes dynamic time warping (the 'dtw' package) to do the matching and the 'CausalImpact' package to analyze the causal impact. In fact, this package can be considered a "workflow wrapper" for those two packages. In addition, if you don't have a chosen set of test markets to match, the Market Matching package can provide suggested test/control market pairs and pseudo prospective power analysis (measuring causal impact at fake interventions).
|
2025-03-25 |
r-mapview
|
public |
Quickly and conveniently create interactive visualisations of spatial data with or without background maps. Attributes of displayed features are fully queryable via pop-up windows. Additional functionality includes methods to visualise true- and false-color raster images and bounding boxes.
|
2025-03-25 |
r-margins
|
public |
An R port of Stata's 'margins' command, which can be used to calculate marginal (or partial) effects from model objects.
|
2025-03-25 |
r-maptiles
|
public |
To create maps from tiles, 'maptiles' downloads, composes and displays tiles from a large number of providers (e.g. 'OpenStreetMap', 'Stamen', 'Esri', 'CARTO', or 'Thunderforest').
|
2025-03-25 |
r-mapspain
|
public |
Administrative Boundaries of Spain at several levels (Autonomous Communities, Provinces, Municipalities) based on the 'GISCO' 'Eurostat' database <https://ec.europa.eu/eurostat/web/gisco> and 'CartoBase SIANE' from 'Instituto Geografico Nacional' <https://www.ign.es/>. It also provides a 'leaflet' plugin and the ability of downloading and processing static tiles.
|
2025-03-25 |
r-mapedit
|
public |
Suite of interactive functions and helpers for selecting and editing geospatial data.
|
2025-03-25 |
r-mapiso
|
public |
Regularly spaced grids containing continuous data are transformed to contour polygons. A grid can be defined by a data.frame (x, y, value), an 'sf' object or a raster from 'terra'.
|
2025-03-25 |
r-mapa
|
public |
Functions and wrappers for using the Multiple Aggregation Prediction Algorithm (MAPA) for time series forecasting. MAPA models and forecasts time series at multiple temporal aggregation levels, thus strengthening and attenuating the various time series components for better holistic estimation of its structure. For details see Kourentzes et al. (2014) <doi:10.1016/j.ijforecast.2013.09.006>.
|
2025-03-25 |
r-manhattanly
|
public |
Create interactive manhattan, Q-Q and volcano plots that are usable from the R console, in 'Dash' apps, in the 'RStudio' viewer pane, in 'R Markdown' documents, and in 'Shiny' apps. Hover the mouse pointer over a point to show details or drag a rectangle to zoom. A manhattan plot is a popular graphical method for visualizing results from high-dimensional data analysis such as a (epi)genome wide association study (GWAS or EWAS), in which p-values, Z-scores, test statistics are plotted on a scatter plot against their genomic position. Manhattan plots are used for visualizing potential regions of interest in the genome that are associated with a phenotype. Interactive manhattan plots allow the inspection of specific value (e.g. rs number or gene name) by hovering the mouse over a cell, as well as zooming into a region of the genome (e.g. a chromosome) by dragging a rectangle around the relevant area. This work is based on the 'qqman' package and the 'plotly.js' engine. It produces similar manhattan and Q-Q plots as the 'manhattan' and 'qq' functions in the 'qqman' package, with the advantage of including extra annotation information and interactive web-based visualizations directly from R. Once uploaded to a 'plotly' account, 'plotly' graphs (and the data behind them) can be viewed and modified in a web browser.
|
2025-03-25 |
r-manynet
|
public |
A set of tools for making, manipulating, and mapping many different types of networks. All functions operate with matrices, edge lists, and 'igraph', 'network', and 'tidygraph' objects, and on one-mode, two-mode (bipartite), and sometimes three-mode networks. The package includes functions for importing and exporting, creating and generating networks, molding and manipulating networks and node and tie attributes, and describing and visualizing networks with sensible defaults.
|
2025-03-25 |
r-maldiquantforeign
|
public |
Functions for reading (tab, csv, Bruker fid, Ciphergen XML, mzXML, mzML, imzML, Analyze 7.5, CDF, mMass MSD) and writing (tab, csv, mMass MSD, mzML, imzML) different file formats of mass spectrometry data into/from 'MALDIquant' objects.
|
2025-03-25 |
r-manova.rm
|
public |
Implemented are various tests for semi-parametric repeated measures and general MANOVA designs that do neither assume multivariate normality nor covariance homogeneity, i.e., the procedures are applicable for a wide range of general multivariate factorial designs. In addition to asymptotic inference methods, novel bootstrap and permutation approaches are implemented as well. These provide more accurate results in case of small to moderate sample sizes. Furthermore, post-hoc comparisons are provided for the multivariate analyses. Friedrich, S., Konietschke, F. and Pauly, M. (2019) <doi:10.32614/RJ-2019-051>.
|
2025-03-25 |
r-magicaxis
|
public |
Functions to make useful (and pretty) plots for scientific plotting. Additional plotting features are added for base plotting, with particular emphasis on making attractive log axis plots.
|
2025-03-25 |
r-lvplot
|
public |
Implements the letter value 'boxplot' which extends the standard 'boxplot' to deal with both larger and smaller number of data points by dynamically selecting the appropriate number of letter values to display.
|
2025-03-25 |
r-luz
|
public |
A high level interface for 'torch' providing utilities to reduce the the amount of code needed for common tasks, abstract away torch details and make the same code work on both the 'CPU' and 'GPU'. It's flexible enough to support expressing a large range of models. It's heavily inspired by 'fastai' by Howard et al. (2020) <arXiv:2002.04688>, 'Keras' by Chollet et al. (2015) and 'PyTorch Lightning' by Falcon et al. (2019) <doi:10.5281/zenodo.3828935>.
|
2025-03-25 |
r-ltm
|
public |
Analysis of multivariate dichotomous and polytomous data using latent trait models under the Item Response Theory approach. It includes the Rasch, the Two-Parameter Logistic, the Birnbaum's Three-Parameter, the Graded Response, and the Generalized Partial Credit Models.
|
2025-03-25 |
r-lpdensity
|
public |
Without imposing stringent distributional assumptions or shape restrictions, nonparametric estimation has been popular in economics and other social sciences for counterfactual analysis, program evaluation, and policy recommendations. This package implements a novel density (and derivatives) estimator based on local polynomial regressions, documented in Cattaneo, Jansson and Ma (2022) <doi:10.18637/jss.v101.i02>: lpdensity() to construct local polynomial based density (and derivatives) estimator, and lpbwdensity() to perform data-driven bandwidth selection.
|
2025-03-25 |
r-lookup
|
public |
Simple functions to lookup items in key-value pairs. See Mehta (2021) <doi:10.1007/978-1-4842-6613-7_6>.
|
2025-03-25 |
r-logr
|
public |
Contains functions to help create log files. The package aims to overcome the difficulty of the base R sink() command. The log_print() function will print to both the console and the file log, without interfering in other write operations.
|
2025-03-25 |
r-logmult
|
public |
Functions to fit log-multiplicative models using 'gnm', with support for convenient printing, plots, and jackknife/bootstrap standard errors. For complex survey data, models can be fitted from design objects from the 'survey' package. Currently supported models include UNIDIFF (Erikson & Goldthorpe, 1992), a.k.a. log-multiplicative layer effect model (Xie, 1992) <doi:10.2307/2096242>, and several association models: Goodman (1979) <doi:10.2307/2286971> row-column association models of the RC(M) and RC(M)-L families with one or several dimensions; two skew-symmetric association models proposed by Yamaguchi (1990) <doi:10.2307/271086> and by van der Heijden & Mooijaart (1995) <doi:10.1177/0049124195024001002> Functions allow computing the intrinsic association coefficient (see Bouchet-Valat (2022) <doi:10.1177/0049124119852389>) and the Altham (1970) index <doi:10.1111/j.2517-6161.1970.tb00816.x>, including via the Bayes shrinkage estimator proposed by Zhou (2015) <doi:10.1177/0081175015570097>; and the RAS/IPF/Deming-Stephan algorithm.
|
2025-03-25 |
r-logitr
|
public |
Fast estimation of multinomial (MNL) and mixed logit (MXL) models in R. Models can be estimated using "Preference" space or "Willingness-to-pay" (WTP) space utility parameterizations. Weighted models can also be estimated. An option is available to run a parallelized multistart optimization loop with random starting points in each iteration, which is useful for non-convex problems like MXL models or models with WTP space utility parameterizations. The main optimization loop uses the 'nloptr' package to minimize the negative log-likelihood function. Additional functions are available for computing and comparing WTP from both preference space and WTP space models and for predicting expected choices and choice probabilities for sets of alternatives based on an estimated model. Mixed logit models can include uncorrelated or correlated heterogeneity covariances and are estimated using maximum simulated likelihood based on the algorithms in Train (2009) <doi:10.1017/CBO9780511805271>. More details can be found in Helveston (2023) <doi:10.18637/jss.v105.i10>.
|
2025-03-25 |
r-loggit
|
public |
An effortless 'ndjson' (newline-delimited 'JSON') logger, with two primary log-writing interfaces. It provides a set of wrappings for base R's message(), warning(), and stop() functions that maintain identical functionality, but also log the handler message to an 'ndjson' log file. 'loggit' also exports its internal 'loggit()' function for powerful and configurable custom logging. No change in existing code is necessary to use this package, and should only require additions to fully leverage the power of the logging system. 'loggit' also provides a log reader for reading an 'ndjson' log file into a data frame, log rotation, and live echo of the 'ndjson' log messages to terminal 'stdout' for log capture by external systems (like containers). 'loggit' is ideal for Shiny apps, data pipelines, modeling work flows, and more. Please see the vignettes for detailed example use cases.
|
2025-03-25 |
r-logcondens
|
public |
Given independent and identically distributed observations X(1), ..., X(n), compute the maximum likelihood estimator (MLE) of a density as well as a smoothed version of it under the assumption that the density is log-concave, see Rufibach (2007) and Duembgen and Rufibach (2009). The main function of the package is 'logConDens' that allows computation of the log-concave MLE and its smoothed version. In addition, we provide functions to compute (1) the value of the density and distribution function estimates (MLE and smoothed) at a given point (2) the characterizing functions of the estimator, (3) to sample from the estimated distribution, (5) to compute a two-sample permutation test based on log-concave densities, (6) the ROC curve based on log-concave estimates within cases and controls, including confidence intervals for given values of false positive fractions (7) computation of a confidence interval for the value of the true density at a fixed point. Finally, three datasets that have been used to illustrate log-concave density estimation are made available.
|
2025-03-25 |
r-locatexec
|
public |
A set of functions to locate some programs available on the user machine. The package provides functions to locate 'Node.js', 'npm', 'LibreOffice', 'Microsoft Word', 'Microsoft PowerPoint', 'Microsoft Excel', 'Python', 'pip', 'Mozilla Firefox' and 'Google Chrome'. User can test the availability of a program with eventually a version and call it with function system2() or system(). This allows the use of a single function to retrieve the path to a program regardless of the operating system and its configuration.
|
2025-03-25 |
r-lmomco
|
public |
Extensive functions for Lmoments (LMs) and probability-weighted moments (PWMs), distribution parameter estimation, LMs for distributions, LM ratio diagrams, multivariate Lcomoments, and asymmetric (asy) trimmed LMs (TLMs). Maximum likelihood and maximum product spacings estimation are available. Right-tail and left-tail LM censoring by threshold or indicator variable are available. LMs of residual (resid) and reversed (rev) residual life are implemented along with 13 quantile operators for reliability analyses. Exact analytical bootstrap estimates of order statistics, LMs, and LM var-covars are available. Harri-Coble Tau34-squared Normality Test is available. Distributions with L, TL, and added (+) support for right-tail censoring (RC) encompass: Asy Exponential (Exp) Power [L], Asy Triangular [L], Cauchy [TL], Eta-Mu [L], Exp. [L], Gamma [L], Generalized (Gen) Exp Poisson [L], Gen Extreme Value [L], Gen Lambda [L, TL], Gen Logistic [L], Gen Normal [L], Gen Pareto [L+RC, TL], Govindarajulu [L], Gumbel [L], Kappa [L], Kappa-Mu [L], Kumaraswamy [L], Laplace [L], Linear Mean Residual Quantile Function [L], Normal [L], 3p log-Normal [L], Pearson Type III [L], Polynomial Density-Quantile 3 and 4 [L], Rayleigh [L], Rev-Gumbel [L+RC], Rice [L], Singh Maddala [L], Slash [TL], 3p Student t [L], Truncated Exponential [L], Wakeby [L], and Weibull [L].
|
2025-03-25 |
r-loadings
|
public |
Computing statistical hypothesis testing for loading in principal component analysis (PCA) (Yamamoto, H. et al. (2014) <doi:10.1186/1471-2105-15-51>), orthogonal smoothed PCA (OS-PCA) (Yamamoto, H. et al. (2021) <doi:10.3390/metabo11030149>), one-sided kernel PCA (Yamamoto, H. (2023) <doi:10.51094/jxiv.262>), partial least squares (PLS) and PLS discriminant analysis (PLS-DA) (Yamamoto, H. et al. (2009) <doi:10.1016/j.chemolab.2009.05.006>), PLS with rank order of groups (PLS-ROG) (Yamamoto, H. (2017) <doi:10.1002/cem.2883>), regularized canonical correlation analysis discriminant analysis (RCCA-DA) (Yamamoto, H. et al. (2008) <doi:10.1016/j.bej.2007.12.009>), multiset PLS and PLS-ROG (Yamamoto, H. (2022) <doi:10.1101/2022.08.30.505949>).
|
2025-03-25 |