About Anaconda Help Download Anaconda

r / packages

Package Name Access Summary Updated
r-biganalytics public Extend the 'bigmemory' package with various analytics. Functions 'bigkmeans' and 'binit' may also be used with native R objects. For 'tapply'-like functions, the bigtabulate package may also be helpful. For linear algebra support, see 'bigalgebra'. For mutex (locking) support for advanced shared-memory usage, see 'synchronicity'. 2024-01-16
r-bigalgebra public Provides arithmetic functions for R matrix and 'big.matrix' objects as well as functions for QR factorization, Cholesky factorization, General eigenvalue, and Singular value decomposition (SVD). A method matrix multiplication and an arithmetic method -for matrix addition, matrix difference- allows for mixed type operation -a matrix class object and a big.matrix class object- and pure type operation for two big.matrix class objects. 2024-01-16
r-bglr public Bayesian Generalized Linear Regression. 2024-01-16
r-bife public Estimates fixed effects binary choice models (logit and probit) with potentially many individual fixed effects and computes average partial effects. Incidental parameter bias can be reduced with an asymptotic bias correction proposed by Fernandez-Val (2009) <doi:10.1016/j.jeconom.2009.02.007>. 2024-01-16
r-biasedurn public Statistical models of biased sampling in the form of univariate and multivariate noncentral hypergeometric distributions, including Wallenius' noncentral hypergeometric distribution and Fisher's noncentral hypergeometric distribution. See vignette("UrnTheory") for explanation of these distributions. Literature: Fog, A. (2008a). Calculation Methods for Wallenius' Noncentral Hypergeometric Distribution, Communications in Statistics, Simulation and Computation, 37(2) <doi:10.1080/03610910701790269>. Fog, A. (2008b). Sampling methods for Wallenius’ and Fisher’s noncentral hypergeometric distributions, Communications in Statistics—Simulation and Computation, 37(2) <doi:10.1080/03610910701790236>. 2024-01-16
r-bfast public Decomposition of time series into trend, seasonal, and remainder components with methods for detecting and characterizing abrupt changes within the trend and seasonal components. 'BFAST' can be used to analyze different types of satellite image time series and can be applied to other disciplines dealing with seasonal or non-seasonal time series, such as hydrology, climatology, and econometrics. The algorithm can be extended to label detected changes with information on the parameters of the fitted piecewise linear models. 'BFAST' monitoring functionality is described in Verbesselt et al. (2010) <doi:10.1016/j.rse.2009.08.014>. 'BFAST monitor' provides functionality to detect disturbance in near real-time based on 'BFAST'- type models, and is described in Verbesselt et al. (2012) <doi:10.1016/j.rse.2012.02.022>. 'BFAST Lite' approach is a flexible approach that handles missing data without interpolation, and will be described in an upcoming paper. Furthermore, different models can now be used to fit the time series data and detect structural changes (breaks). 2024-01-16
r-bhsbvar public Provides a function for estimating the parameters of Structural Bayesian Vector Autoregression models with the method developed by Baumeister and Hamilton (2015) <doi:10.3982/ECTA12356>, Baumeister and Hamilton (2017) <doi:10.3386/w24167>, and Baumeister and Hamilton (2018) <doi:10.1016/j.jmoneco.2018.06.005>. Functions for plotting impulse responses, historical decompositions, and posterior distributions of model parameters are also provided. 2024-01-16
r-bfpack public Implementation of default Bayes factors for testing statistical hypotheses under various statistical models. The package is intended for applied quantitative researchers in the social and behavioral sciences, medical research, and related fields. The Bayes factor tests can be executed for statistical models such as univariate and multivariate normal linear models, correlation analysis, generalized linear models, special cases of linear mixed models, survival models, relational event models. Parameters that can be tested are location parameters (e.g., group means, regression coefficients), variances (e.g., group variances), and measures of association (e.g,. polychoric/polyserial/biserial/tetrachoric/product moments correlations), among others. The statistical underpinnings are described in Mulder and Xin (2019) <DOI:10.1080/00273171.2021.1904809>, Mulder and Gelissen (2019) <DOI:10.1080/02664763.2021.1992360>, Mulder (2016) <DOI:10.1016/j.jmp.2014.09.004>, Mulder and Fox (2019) <DOI:10.1214/18-BA1115>, Mulder and Fox (2013) <DOI:10.1007/s11222-011-9295-3>, Boeing-Messing, van Assen, Hofman, Hoijtink, and Mulder (2017) <DOI:10.1037/met0000116>, Hoijtink, Mulder, van Lissa, and Gu, (2018) <DOI:10.31234/osf.io/v3shc>, Gu, Mulder, and Hoijtink, (2018) <DOI:10.1111/bmsp.12110>, Hoijtink, Gu, and Mulder, (2018) <DOI:10.1111/bmsp.12145>, and Hoijtink, Gu, Mulder, and Rosseel, (2018) <DOI:10.1037/met0000187>. When using the packages, please refer to Mulder et al. (2021) <DOI:10.18637/jss.v100.i18>. 2024-01-16
r-bessel public Computations for Bessel function for complex, real and partly 'mpfr' (arbitrary precision) numbers; notably interfacing TOMS 644; approximations for large arguments, experiments, etc. 2024-01-16
r-bfp public Implements the Bayesian paradigm for fractional polynomial models under the assumption of normally distributed error terms, see Sabanes Bove, D. and Held, L. (2011) <doi:10.1007/s11222-010-9170-7>. 2024-01-16
r-betategarch public Simulation, estimation and forecasting of first-order Beta-Skew-t-EGARCH models with leverage (one-component, two-component, skewed versions). 2024-01-16
r-bevimed public A fast integrative genetic association test for rare diseases based on a model for disease status given allele counts at rare variant sites. Probability of association, mode of inheritance and probability of pathogenicity for individual variants are all inferred in a Bayesian framework - 'A Fast Association Test for Identifying Pathogenic Variants Involved in Rare Diseases', Greene et al 2017 <doi:10.1016/j.ajhg.2017.05.015>. 2024-01-16
r-bench public Tools to accurately benchmark and analyze execution times for R expressions. 2024-01-16
r-benchmarking public Methods for frontier analysis, Data Envelopment Analysis (DEA), under different technology assumptions (fdh, vrs, drs, crs, irs, add/frh, and fdh+), and using different efficiency measures (input based, output based, hyperbolic graph, additive, super, and directional efficiency). Peers and slacks are available, partial price information can be included, and optimal cost, revenue and profit can be calculated. Evaluation of mergers is also supported. Methods for graphing the technology sets are also included. There is also support for comparative methods based on Stochastic Frontier Analyses (SFA) and for convex nonparametric least squares of convex functions (STONED). In general, the methods can be used to solve not only standard models, but also many other model variants. It complements the book, Bogetoft and Otto, Benchmarking with DEA, SFA, and R, Springer-Verlag, 2011, but can of course also be used as a stand-alone package. 2024-01-16
r-bestglm public Best subset glm using information criteria or cross-validation, carried by using 'leaps' algorithm (Furnival and Wilson, 1974) <doi:10.2307/1267601> or complete enumeration (Morgan and Tatar, 1972) <doi:10.1080/00401706.1972.10488918>. Implements PCR and PLS using AIC/BIC. Implements one-standard deviation rule for use with the 'caret' package. 2024-01-16
r-bekks public Methods and tools for estimating, simulating and forecasting of so-called BEKK-models (named after Baba, Engle, Kraft and Kroner) based on the fast Berndt–Hall–Hall–Hausman (BHHH) algorithm described in Hafner and Herwartz (2008) <doi:10.1007/s00184-007-0130-y>. 2024-01-16
r-bess public An implementation of best subset selection in generalized linear model and Cox proportional hazard model via the primal dual active set algorithm proposed by Wen, C., Zhang, A., Quan, S. and Wang, X. (2020) <doi:10.18637/jss.v094.i04>. The algorithm formulates coefficient parameters and residuals as primal and dual variables and utilizes efficient active set selection strategies based on the complementarity of the primal and dual variables. 2024-01-16
r-benfordtests public Several specialized statistical tests and support functions for determining if numerical data could conform to Benford's law. 2024-01-16
r-benchr public Provides infrastructure to accurately measure and compare the execution time of R expressions. 2024-01-16
r-belg public Calculates the Boltzmann entropy of a landscape gradient. This package uses the analytical method created by Gao, P., Zhang, H. and Li, Z., 2018 (<doi:10.1111/tgis.12315>) and by Gao, P. and Li, Z., 2019 (<doi:10.1007/s10980-019-00854-3>). It also extend the original ideas by allowing calculations on data with missing values. 2024-01-16
r-bbotk public Features highly configurable search spaces via the 'paradox' package and optimizes every user-defined objective function. The package includes several optimization algorithms e.g. Random Search, Iterated Racing, Bayesian Optimization (in 'mlr3mbo') and Hyperband (in 'mlr3hyperband'). bbotk is the base package of 'mlr3tuning', 'mlr3fselect' and 'miesmuschel'. 2024-01-16
r-beeswarm public The bee swarm plot is a one-dimensional scatter plot like "stripchart", but with closely-packed, non-overlapping points. 2024-01-16
r-bdsmatrix None This is a special case of sparse matrices, used by coxme. 2024-01-16
r-bedmatrix public A matrix-like data structure that allows for efficient, convenient, and scalable subsetting of binary genotype/phenotype files generated by PLINK (<https://www.cog-genomics.org/plink2>), the whole genome association analysis toolset, without loading the entire file into memory. 2024-01-16
r-bchron public Enables quick calibration of radiocarbon dates under various calibration curves (including user generated ones); age-depth modelling as per the algorithm of Haslett and Parnell (2008) <DOI:10.1111/j.1467-9876.2008.00623.x>; Relative sea level rate estimation incorporating time uncertainty in polynomial regression models (Parnell and Gehrels 2015) <DOI:10.1002/9781118452547.ch32>; non-parametric phase modelling via Gaussian mixtures as a means to determine the activity of a site (and as an alternative to the Oxcal function SUM; currently unpublished), and reverse calibration of dates from calibrated into un-calibrated years (also unpublished). 2024-01-16
r-bdgraph public Statistical tools for Bayesian structure learning in undirected graphical models for continuous, ordinal/discrete/count, and mixed data. The package is implemented the recent improvements in the Bayesian graphical models' literature, including Mohammadi and Wit (2015) <doi:10.1214/14-BA889>, Mohammadi et al. (2021) <doi:10.1080/01621459.2021.1996377>, and Dobra and Mohammadi (2018) <doi:10.1214/18-AOAS1164>. 2024-01-16
r-bda public Algorithms developed for binned data analysis, gene expression data analysis and measurement error models for ordinal data analysis. 2024-01-16
r-bcee public A Bayesian model averaging approach to causal effect estimation based on the BCEE algorithm. Currently supports binary or continuous exposures and outcomes. For more details, see Talbot et al. (2015) <doi:10.1515/jci-2014-0035> Talbot and Beaudoin (2022) <doi:10.1515/jci-2021-0023>. 2024-01-16
r-bcv public Methods for choosing the rank of an SVD (singular value decomposition) approximation via cross validation. The package provides both Gabriel-style "block" holdouts and Wold-style "speckled" holdouts. It also includes an implementation of the SVDImpute algorithm. For more information about Bi-cross-validation, see Owen & Perry's 2009 AoAS article (at <arXiv:0908.2062>) and Perry's 2009 PhD thesis (at <arXiv:0909.3052>). 2024-01-16
r-bcrypt public Bindings to the 'blowfish' password hashing algorithm derived from the 'OpenBSD' implementation. 2024-01-16
r-bcpa public The Behavioral Change Point Analysis (BCPA) is a method of identifying hidden shifts in the underlying parameters of a time series, developed specifically to be applied to animal movement data which is irregularly sampled. The method is based on: E. Gurarie, R. Andrews and K. Laidre A novel method for identifying behavioural changes in animal movement data (2009) Ecology Letters 12:5 395-408. A development version is on <https://github.com/EliGurarie/bcpa>. NOTE: the BCPA method may be useful for any univariate, irregularly sampled Gaussian time-series, but animal movement analysts are encouraged to apply correlated velocity change point analysis as implemented in the smoove package, as of this writing on GitHub at <https://github.com/EliGurarie/smoove>. An example of a univariate analysis is provided in the UnivariateBCPA vignette. 2024-01-16
r-bcp public Provides an implementation of the Barry and Hartigan (1993) product partition model for the normal errors change point problem using Markov Chain Monte Carlo. It also extends the methodology to regression models on a connected graph (Wang and Emerson, 2015); this allows estimation of change point models with multivariate responses. Parallel MCMC, previously available in bcp v.3.0.0, is currently not implemented. 2024-01-16
r-bayestfr public Making probabilistic projections of total fertility rate for all countries of the world, using a Bayesian hierarchical model <doi:10.1007/s13524-011-0040-5> <doi:10.18637/jss.v106.i08>. Subnational probabilistic projections are also supported <doi:10.4054/DemRes.2018.38.60>. 2024-01-16
r-bcbcsf public Fully Bayesian Classification with a subset of high-dimensional features, such as expression levels of genes. The data are modeled with a hierarchical Bayesian models using heavy-tailed t distributions as priors. When a large number of features are available, one may like to select only a subset of features to use, typically those features strongly correlated with the response in training cases. Such a feature selection procedure is however invalid since the relationship between the response and the features has be exaggerated by feature selection. This package provides a way to avoid this bias and yield better-calibrated predictions for future cases when one uses F-statistic to select features. 2024-01-16
r-bbmisc public Miscellaneous helper functions for and from B. Bischl and some other guys, mainly for package development. 2024-01-16
r-bbl public Supervised learning using Boltzmann Bayes model inference, which extends naive Bayes model to include interactions. Enables classification of data into multiple response groups based on a large number of discrete predictors that can take factor values of heterogeneous levels. Either pseudo-likelihood or mean field inference can be used with L2 regularization, cross-validation, and prediction on new data. <doi:10.18637/jss.v101.i05>. 2024-01-16
r-bayesxsrc public 'BayesX' performs Bayesian inference in structured additive regression (STAR) models. The R package BayesXsrc provides the 'BayesX' command line tool for easy installation. A convenient R interface is provided in package R2BayesX. 2024-01-16
r-bayesvarsel public Bayes factors and posterior probabilities in Linear models, aimed at provide a formal Bayesian answer to testing and variable selection problems. 2024-01-16
r-bayesmallows public An implementation of the Bayesian version of the Mallows rank model (Vitelli et al., Journal of Machine Learning Research, 2018 <https://jmlr.org/papers/v18/15-481.html>; Crispino et al., Annals of Applied Statistics, 2019 <doi:10.1214/18-AOAS1203>; Sorensen et al., R Journal, 2020 <doi:10.32614/RJ-2020-026>; Stein, PhD Thesis, 2023 <https://eprints.lancs.ac.uk/id/eprint/195759>). Both Metropolis-Hastings and sequential Monte Carlo algorithms for estimating the models are available. Cayley, footrule, Hamming, Kendall, Spearman, and Ulam distances are supported in the models. The rank data to be analyzed can be in the form of complete rankings, top-k rankings, partially missing rankings, as well as consistent and inconsistent pairwise preferences. Several functions for plotting and studying the posterior distributions of parameters are provided. The package also provides functions for estimating the partition function (normalizing constant) of the Mallows rank model, both with the importance sampling algorithm of Vitelli et al. and asymptotic approximation with the IPFP algorithm (Mukherjee, Annals of Statistics, 2016 <doi:10.1214/15-AOS1389>). 2024-01-16
r-bayestree public This is an implementation of BART:Bayesian Additive Regression Trees, by Chipman, George, McCulloch (2010). 2024-01-16
r-bayeslife public Making probabilistic projections of life expectancy for all countries of the world, using a Bayesian hierarchical model <doi:10.1007/s13524-012-0193-x>. Subnational projections are also supported. 2024-01-16
r-bayeslogit public Tools for sampling from the PolyaGamma distribution based on Polson, Scott, and Windle (2013) <doi:10.1080/01621459.2013.829001>. Useful for logistic regression. 2024-01-16
r-bayesqr public Bayesian quantile regression using the asymmetric Laplace distribution, both continuous as well as binary dependent variables are supported. The package consists of implementations of the methods of Yu & Moyeed (2001) <doi:10.1016/S0167-7152(01)00124-9>, Benoit & Van den Poel (2012) <doi:10.1002/jae.1216> and Al-Hamzawi, Yu & Benoit (2012) <doi:10.1177/1471082X1101200304>. To speed up the calculations, the Markov Chain Monte Carlo core of all algorithms is programmed in Fortran and called from R. 2024-01-16
r-bayesm public Covers many important models used in marketing and micro-econometrics applications. The package includes: Bayes Regression (univariate or multivariate dep var), Bayes Seemingly Unrelated Regression (SUR), Binary and Ordinal Probit, Multinomial Logit (MNL) and Multinomial Probit (MNP), Multivariate Probit, Negative Binomial (Poisson) Regression, Multivariate Mixtures of Normals (including clustering), Dirichlet Process Prior Density Estimation with normal base, Hierarchical Linear Models with normal prior and covariates, Hierarchical Linear Models with a mixture of normals prior and covariates, Hierarchical Multinomial Logits with a mixture of normals prior and covariates, Hierarchical Multinomial Logits with a Dirichlet Process prior and covariates, Hierarchical Negative Binomial Regression Models, Bayesian analysis of choice-based conjoint data, Bayesian treatment of linear instrumental variables models, Analysis of Multivariate Ordinal survey data with scale usage heterogeneity (as in Rossi et al, JASA (01)), Bayesian Analysis of Aggregate Random Coefficient Logit Models as in BLP (see Jiang, Manchanda, Rossi 2009) For further reference, consult our book, Bayesian Statistics and Marketing by Rossi, Allenby and McCulloch (Wiley first edition 2005 and second forthcoming) and Bayesian Non- and Semi-Parametric Methods and Applications (Princeton U Press 2014). 2024-01-16
r-bayesfm public Collection of procedures to perform Bayesian analysis on a variety of factor models. Currently, it includes: "Bayesian Exploratory Factor Analysis" (befa) from G. Conti, S. Frühwirth-Schnatter, J.J. Heckman, R. Piatek (2014) <doi:10.1016/j.jeconom.2014.06.008>, an approach to dedicated factor analysis with stochastic search on the structure of the factor loading matrix. The number of latent factors, as well as the allocation of the manifest variables to the factors, are not fixed a priori but determined during MCMC sampling. 2024-01-16
r-bayesiantools public General-purpose MCMC and SMC samplers, as well as plot and diagnostic functions for Bayesian statistics, with a particular focus on calibrating complex system models. Implemented samplers include various Metropolis MCMC variants (including adaptive and/or delayed rejection MH), the T-walk, two differential evolution MCMCs, two DREAM MCMCs, and a sequential Monte Carlo (SMC) particle filter. 2024-01-16
r-bayesimages public Various algorithms for segmentation of 2D and 3D images, such as computed tomography and satellite remote sensing. This package implements Bayesian image analysis using the hidden Potts model with external field prior of Moores et al. (2015) <doi:10.1016/j.csda.2014.12.001>. Latent labels are sampled using chequerboard updating or Swendsen-Wang. Algorithms for the smoothing parameter include pseudolikelihood, path sampling, the exchange algorithm, approximate Bayesian computation (ABC-MCMC and ABC-SMC), and the parametric functional approximate Bayesian (PFAB) algorithm. Refer to <doi:10.1007/978-3-030-42553-1_6> for an overview and also to <doi:10.1007/s11222-014-9525-6> and <doi:10.1214/18-BA1130> for further details of specific algorithms. 2024-01-16
r-bayesfactor public A suite of functions for computing various Bayes factors for simple designs, including contingency tables, one- and two-sample designs, one-way designs, general ANOVA designs, and linear regression. 2024-01-16
r-bayesdfa public Implements Bayesian dynamic factor analysis with 'Stan'. Dynamic factor analysis is a dimension reduction tool for multivariate time series. 'bayesdfa' extends conventional dynamic factor models in several ways. First, extreme events may be estimated in the latent trend by modeling process error with a student-t distribution. Second, alternative constraints (including proportions are allowed). Third, the estimated dynamic factors can be analyzed with hidden Markov models to evaluate support for latent regimes. 2024-01-16
r-bayesianetas public The Epidemic Type Aftershock Sequence (ETAS) model is one of the best-performing methods for modeling and forecasting earthquake occurrences. This package implements Bayesian estimation routines to draw samples from the full posterior distribution of the model parameters, given an earthquake catalog. The paper on which this package is based is Gordon J. Ross - Bayesian Estimation of the ETAS Model for Earthquake Occurrences (2016), available from the below URL. 2024-01-16

© 2025 Anaconda, Inc. All Rights Reserved. (v4.0.7) Legal | Privacy Policy