About Anaconda Help Download Anaconda

r / packages

Package Name Access Summary Updated
r-cluscov public Clustered covariate regression enables estimation and inference in both linear and non-linear models with linear predictor functions even when the design matrix is column rank deficient. Routines in this package implement algorithms in Soale and Tsyawo (2019) <doi:10.13140/RG.2.2.32355.81441>. 2024-01-16
r-clinicaltrialsummary public Provides estimates of several summary measures for clinical trials including the average hazard ratio, the weighted average hazard ratio, the restricted superiority probability ratio, the restricted mean survival difference and the ratio of restricted mean times lost, based on the short-term and long-term hazard ratio model (Yang, 2005 <doi:10.1093/biomet/92.1.1>) which accommodates various non-proportional hazards scenarios. The inference procedures and the asymptotic results for the summary measures are discussed in Yang (2018, <doi:10.1002/sim.7676>). 2024-01-16
r-clogitl1 public Tools for the fitting and cross validation of exact conditional logistic regression models with lasso and elastic net penalties. Uses cyclic coordinate descent and warm starts to compute the entire path efficiently. 2024-01-16
r-clogitboost public A set of functions to fit a boosting conditional logit model. 2024-01-16
r-clinfun public Utilities to make your clinical collaborations easier if not fun. It contains functions for designing studies such as Simon 2-stage and group sequential designs and for data analysis such as Jonckheere-Terpstra test and estimating survival quantiles. 2024-01-16
r-cli public A suite of tools to build attractive command line interfaces ('CLIs'), from semantic elements: headings, lists, alerts, paragraphs, etc. Supports custom themes via a 'CSS'-like language. It also contains a number of lower level 'CLI' elements: rules, boxes, trees, and 'Unicode' symbols with 'ASCII' alternatives. It support ANSI colors and text styles as well. 2024-01-16
r-chillr public The phenology of plants (i.e. the timing of their annual life phases) depends on climatic cues. For temperate trees and many other plants, spring phases, such as leaf emergence and flowering, have been found to result from the effects of both cool (chilling) conditions and heat. Fruit tree scientists (pomologists) have developed some metrics to quantify chilling and heat (e.g. see Luedeling (2012) <doi:10.1016/j.scienta.2012.07.011>). 'chillR' contains functions for processing temperature records into chilling (Chilling Hours, Utah Chill Units and Chill Portions) and heat units (Growing Degree Hours). Regarding chilling metrics, Chill Portions are often considered the most promising, but they are difficult to calculate. This package makes it easy. 'chillR' also contains procedures for conducting a PLS analysis relating phenological dates (e.g. bloom dates) to either mean temperatures or mean chill and heat accumulation rates, based on long-term weather and phenology records (Luedeling and Gassner (2012) <doi:10.1016/j.agrformet.2011.10.020>). As of version 0.65, it also includes functions for generating weather scenarios with a weather generator, for conducting climate change analyses for temperature-based climatic metrics and for plotting results from such analyses. Since version 0.70, 'chillR' contains a function for interpolating hourly temperature records. 2024-01-16
r-clickclust public Clustering categorical sequences by means of finite mixtures with Markov model components is the main utility of ClickClust. The package also allows detecting blocks of equivalent states by forward and backward state selection procedures. 2024-01-16
r-cleancall public Wrapper of .Call() that runs exit handlers to clean up C resources. Helps managing C (non-R) resources while using the R API. 2024-01-16
r-cld2 public Bindings to Google's C++ library Compact Language Detector 2 (see <https://github.com/cld2owners/cld2#readme> for more information). Probabilistically detects over 80 languages in plain text or HTML. For mixed-language input it returns the top three detected languages and their approximate proportion of the total classified text bytes (e.g. 80% English and 20% French out of 1000 bytes). There is also a 'cld3' package on CRAN which uses a neural network model instead. 2024-01-16
r-cladorcpp public Various cladogenesis-related calculations that are slow in pure R are implemented in C++ with Rcpp. These include the calculation of the probability of various scenarios for the inheritance of geographic range at the divergence events on a phylogenetic tree, and other calculations necessary for models which are not continuous-time markov chains (CTMC), but where change instead occurs instantaneously at speciation events. Typically these models must assess the probability of every possible combination of (ancestor state, left descendent state, right descendent state). This means that there are up to (# of states)^3 combinations to investigate, and in biogeographical models, there can easily be hundreds of states, so calculation time becomes an issue. C++ implementation plus clever tricks (many combinations can be eliminated a priori) can greatly speed the computation time over naive R implementations. CITATION INFO: This package is the result of my Ph.D. research, please cite the package if you use it! Type: citation(package="cladoRcpp") to get the citation information. 2024-01-16
r-classint public Selected commonly used methods for choosing univariate class intervals for mapping or other graphics purposes. 2024-01-16
r-class None Various functions for classification, including k-nearest neighbour, Learning Vector Quantization and Self-Organizing Maps. 2024-01-16
r-ckmeans.1d.dp public Fast, optimal, and reproducible weighted univariate clustering by dynamic programming. Four problems are solved, including univariate k-means (Wang & Song 2011) <doi:10.32614/RJ-2011-015> (Song & Zhong 2020) <doi:10.1093/bioinformatics/btaa613>, k-median, k-segments, and multi-channel weighted k-means. Dynamic programming is used to minimize the sum of (weighted) within-cluster distances using respective metrics. Its advantage over heuristic clustering in efficiency and accuracy is pronounced when there are many clusters. Multi-channel weighted k-means groups multiple univariate signals into k clusters. An auxiliary function generates histograms adaptive to patterns in data. This package provides a powerful set of tools for univariate data analysis with guaranteed optimality, efficiency, and reproducibility, useful for peak calling on temporal, spatial, and spectral data. 2024-01-16
r-cklrt public Composite Kernel Machine Regression based on Likelihood Ratio Test (CKLRT): in this package, we develop a kernel machine regression framework to model the overall genetic effect of a SNP-set, considering the possible GE interaction. Specifically, we use a composite kernel to specify the overall genetic effect via a nonparametric function and we model additional covariates parametrically within the regression framework. The composite kernel is constructed as a weighted average of two kernels, one corresponding to the genetic main effect and one corresponding to the GE interaction effect. We propose a likelihood ratio test (LRT) and a restricted likelihood ratio test (RLRT) for statistical significance. We derive a Monte Carlo approach for the finite sample distributions of LRT and RLRT statistics. (N. Zhao, H. Zhang, J. Clark, A. Maity, M. Wu. Composite Kernel Machine Regression based on Likelihood Ratio Test with Application for Combined Genetic and Gene-environment Interaction Effect (Submitted).) 2024-01-16
r-cit public A likelihood-based hypothesis testing approach is implemented for assessing causal mediation. Described in Millstein, Chen, and Breton (2016), <DOI:10.1093/bioinformatics/btw135>, it could be used to test for mediation of a known causal association between a DNA variant, the 'instrumental variable', and a clinical outcome or phenotype by gene expression or DNA methylation, the potential mediator. Another example would be testing mediation of the effect of a drug on a clinical outcome by the molecular target. The hypothesis test generates a p-value or permutation-based FDR value with confidence intervals to quantify uncertainty in the causal inference. The outcome can be represented by either a continuous or binary variable, the potential mediator is continuous, and the instrumental variable can be continuous or binary and is not limited to a single variable but may be a design matrix representing multiple variables. 2024-01-16
r-chunkr public Read tables chunk by chunk using a C++ backend and a simple R interface. 2024-01-16
r-cirt public Jointly model the accuracy of cognitive responses and item choices within a Bayesian hierarchical framework as described by Culpepper and Balamuta (2015) <doi:10.1007/s11336-015-9484-7>. In addition, the package contains the datasets used within the analysis of the paper. 2024-01-16
r-circularddm public Circular drift-diffusion model for continuous reports. 2024-01-16
r-chngpt public Threshold regression models are also called two-phase regression, broken-stick regression, split-point regression, structural change models, and regression kink models, with and without interaction terms. Methods for both continuous and discontinuous threshold models are included, but the support for the former is much greater. This package is described in Fong, Huang, Gilbert and Permar (2017) <DOI:10.1186/s12859-017-1863-x> and the package vignette. 2024-01-16
r-circular public Circular Statistics, from "Topics in circular Statistics" (2001) S. Rao Jammalamadaka and A. SenGupta, World Scientific. 2024-01-16
r-cinterpolate public Simple interpolation methods designed to be used from C code. Supports constant, linear and spline interpolation. An R wrapper is included but this package is primarily designed to be used from C code using 'LinkingTo'. The spline calculations are classical cubic interpolation, e.g., Forsythe, Malcolm and Moler (1977) <ISBN: 9780131653320>. 2024-01-16
r-chron None Provides chronological objects which can handle dates and times. 2024-01-16
r-changepoint.np public Implements the multiple changepoint algorithm PELT with a nonparametric cost function based on the empirical distribution of the data. This package extends the changepoint package (see Killick, R and Eckley, I (2014) <doi:10.18637/jss.v058.i03> ). 2024-01-16
r-chopthin public Resampling is a standard step in particle filtering and in sequential Monte Carlo. This package implements the chopthin resampler, which keeps a bound on the ratio between the largest and the smallest weights after resampling. 2024-01-16
r-cholwishart public Sampling from the Cholesky factorization of a Wishart random variable, sampling from the inverse Wishart distribution, sampling from the Cholesky factorization of an inverse Wishart random variable, sampling from the pseudo Wishart distribution, sampling from the generalized inverse Wishart distribution, computing densities for the Wishart and inverse Wishart distributions, and computing the multivariate gamma and digamma functions. Provides a header file so the C functions can be called directly from other programs. 2024-01-16
r-chnosz public An integrated set of tools for thermodynamic calculations in aqueous geochemistry and geobiochemistry. Functions are provided for writing balanced reactions to form species from user-selected basis species and for calculating the standard molal properties of species and reactions, including the standard Gibbs energy and equilibrium constant. Calculations of the non-equilibrium chemical affinity and equilibrium chemical activity of species can be portrayed on diagrams as a function of temperature, pressure, or activity of basis species; in two dimensions, this gives a maximum affinity or predominance diagram. The diagrams have formatted chemical formulas and axis labels, and water stability limits can be added to Eh-pH, oxygen fugacity- temperature, and other diagrams with a redox variable. The package has been developed to handle common calculations in aqueous geochemistry, such as solubility due to complexation of metal ions, mineral buffers of redox or pH, and changing the basis species across a diagram ("mosaic diagrams"). CHNOSZ also implements a group additivity algorithm for the standard thermodynamic properties of proteins. 2024-01-16
r-cheddar public Provides a flexible, extendable representation of an ecological community and a range of functions for analysis and visualisation, focusing on food web, body mass and numerical abundance data. Allows inter-web comparisons such as examining changes in community structure over environmental, temporal or spatial gradients. 2024-01-16
r-chiptest public Nonparametric Tests to identify the differential enrichment region for two conditions or time-course ChIP-seq data. It includes: data preprocessing function, estimation of a small constant used in hypothesis testing, a kernel-based two sample nonparametric test, two assumption-free two sample nonparametric test. 2024-01-16
r-cellwise public Tools for detecting cellwise outliers and robust methods to analyze data which may contain them. Contains the implementation of the algorithms described in Rousseeuw and Van den Bossche (2018) <doi:10.1080/00401706.2017.1340909> (open access) Hubert et al. (2019) <doi:10.1080/00401706.2018.1562989> (open access), Raymaekers and Rousseeuw (2021) <doi:10.1080/00401706.2019.1677270> (open access), Raymaekers and Rousseeuw (2021) <doi:10.1007/s10994-021-05960-5> (open access), Raymaekers and Rousseeuw (2021) <doi:10.52933/jdssv.v1i3.18> (open access), Raymaekers and Rousseeuw (2022) <arXiv:2207.13493> (open access) Rousseeuw (2022) <doi:10.1016/j.ecosta.2023.01.007> (open access). Examples can be found in the vignettes: "DDC_examples", "MacroPCA_examples", "wrap_examples", "transfo_examples", "DI_examples", "cellMCD_examples" , "Correspondence_analysis_examples", and "cellwise_weights_examples". 2024-01-16
r-chaos01 public Computes and visualize the results of the 0-1 test for chaos proposed by Gottwald and Melbourne (2004) <DOI:10.1137/080718851>. The algorithm is available in parallel for the independent values of parameter c. Additionally, fast RQA is added to distinguish chaos from noise. 2024-01-16
r-channelattribution public Advertisers use a variety of online marketing channels to reach consumers and they want to know the degree each channel contributes to their marketing success. This is called online multi-channel attribution problem. This package contains a probabilistic algorithm for the attribution problem. The model uses a k-order Markov representation to identify structural correlations in the customer journey data. The package also contains three heuristic algorithms (first-touch, last-touch and linear-touch approach) for the same problem. The algorithms are implemented in C++. 2024-01-16
r-cdm public Functions for cognitive diagnosis modeling and multidimensional item response modeling for dichotomous and polytomous item responses. This package enables the estimation of the DINA and DINO model (Junker & Sijtsma, 2001, <doi:10.1177/01466210122032064>), the multiple group (polytomous) GDINA model (de la Torre, 2011, <doi:10.1007/s11336-011-9207-7>), the multiple choice DINA model (de la Torre, 2009, <doi:10.1177/0146621608320523>), the general diagnostic model (GDM; von Davier, 2008, <doi:10.1348/000711007X193957>), the structured latent class model (SLCA; Formann, 1992, <doi:10.1080/01621459.1992.10475229>) and regularized latent class analysis (Chen, Li, Liu, & Ying, 2017, <doi:10.1007/s11336-016-9545-6>). See George, Robitzsch, Kiefer, Gross, and Uenlue (2017) <doi:10.18637/jss.v074.i02> or Robitzsch and George (2019, <doi:10.1007/978-3-030-05584-4_26>) for further details on estimation and the package structure. For tutorials on how to use the CDM package see George and Robitzsch (2015, <doi:10.20982/tqmp.11.3.p189>) as well as Ravand and Robitzsch (2015). 2024-01-16
r-changepoint public Implements various mainstream and specialised changepoint methods for finding single and multiple changepoints within data. Many popular non-parametric and frequentist methods are included. The cpt.mean(), cpt.var(), cpt.meanvar() functions should be your first point of call. 2024-01-16
r-cggp public Run computer experiments using the adaptive composite grid algorithm with a Gaussian process model. The algorithm works best when running an experiment that can evaluate thousands of points from a deterministic computer simulation. This package is an implementation of a forthcoming paper by Plumlee, Erickson, Ankenman, et al. For a preprint of the paper, contact the maintainer of this package. 2024-01-16
r-cglasso public Conditional graphical lasso estimator is an extension of the graphical lasso proposed to estimate the conditional dependence structure of a set of p response variables given q predictors. This package provides suitable extensions developed to study datasets with censored and/or missing values. Standard conditional graphical lasso is available as a special case. Furthermore, the package provides an integrated set of core routines for visualization, analysis, and simulation of datasets with censored and/or missing values drawn from a Gaussian graphical model. Details about the implemented models can be found in Augugliaro et al. (2020b) <doi: 10.1007/s11222-020-09945-7>, Augugliaro et al. (2020a) <doi: 10.1093/biostatistics/kxy043>, Yin et al. (2001) <doi: 10.1214/11-AOAS494> and Stadler et al. (2012) <doi: 10.1007/s11222-010-9219-7>. 2024-01-16
r-cfc public Numerical integration of cause-specific survival curves to arrive at cause-specific cumulative incidence functions, with three usage modes: 1) Convenient API for parametric survival regression followed by competing-risk analysis, 2) API for CFC, accepting user-specified survival functions in R, and 3) Same as 2, but accepting survival functions in C++. For mathematical details and software tutorial, see Mahani and Sharabiani (2019) <DOI:10.18637/jss.v089.i09>. 2024-01-16
r-cgauc public The cgAUC can calculate the AUC-type measure of Obuchowski(2006) when gold standard is continuous, and find the optimal linear combination of variables with respect to this measure. 2024-01-16
r-cepreader public Read Condensed Cornell Ecology Program ('CEP') and legacy 'CANOCO' files into R data frames. 2024-01-16
r-cfa public Analysis of configuration frequencies for simple and repeated measures, multiple-samples CFA, hierarchical CFA, bootstrap CFA, functional CFA, Kieser-Victor CFA, and Lindner's test using a conventional and an accelerated algorithm. 2024-01-16
r-cba public Implements clustering techniques such as Proximus and Rock, utility functions for efficient computation of cross distances and data manipulation. 2024-01-16
r-catools None Contains several basic utility functions including: moving (rolling, running) window statistic functions, read/write for GIF and ENVI binary files, fast calculation of AUC, LogitBoost classifier, base64 encoder/decoder, round-off-error-free sum and cumsum, etc. 2024-01-16
r-cec public Splits data into Gaussian type clusters using the Cross-Entropy Clustering ('CEC') method. This method allows for the simultaneous use of various types of Gaussian mixture models, for performing the reduction of unnecessary clusters, and for discovering new clusters by splitting them. 'CEC' is based on the work of Spurek, P. and Tabor, J. (2014) <doi:10.1016/j.patcog.2014.03.006>. 2024-01-16
r-cdltools public Downloads USDA National Agricultural Statistics Service (NASS) cropscape data for a specified state. Utilities for fips, abbreviation, and name conversion are also provided. Full functionality requires an internet connection, but data sets can be cached for later off-line use. 2024-01-16
r-cclust public Convex Clustering methods, including K-means algorithm, On-line Update algorithm (Hard Competitive Learning) and Neural Gas algorithm (Soft Competitive Learning), and calculation of several indexes for finding the number of clusters in a data set. 2024-01-16
r-castor public Efficient phylogenetic analyses on massive phylogenies comprising up to millions of tips. Functions include pruning, rerooting, calculation of most-recent common ancestors, calculating distances from the tree root and calculating pairwise distances. Calculation of phylogenetic signal and mean trait depth (trait conservatism), ancestral state reconstruction and hidden character prediction of discrete characters, simulating and fitting models of trait evolution, fitting and simulating diversification models, dating trees, comparing trees, and reading/writing trees in Newick format. Citation: Louca, Stilianos and Doebeli, Michael (2017) <doi:10.1093/bioinformatics/btx701>. 2024-01-16
r-cccp public Routines for solving convex optimization problems with cone constraints by means of interior-point methods. The implemented algorithms are partially ported from CVXOPT, a Python module for convex optimization (see <http://cvxopt.org> for more information). 2024-01-16
r-ccapp public Canonical correlation analysis and maximum correlation via projection pursuit, as well as fast implementations of correlation estimators, with a focus on robust and nonparametric methods. 2024-01-16
r-cbinom public Implementation of the d/p/q/r family of functions for a continuous analog to the standard discrete binomial with continuous size parameter and continuous support with x in [0, size + 1], following Ilienko (2013) <arXiv:1303.5990>. 2024-01-16
r-catirt public Functions designed to simulate data that conform to basic unidimensional IRT models (for now 3-parameter binary response models and graded response models) along with Post-Hoc CAT simulations of those models given various item selection methods, ability estimation methods, and termination criteria. See Wainer (2000) <doi:10.4324/9781410605931>, van der Linden & Pashley (2010) <doi:10.1007/978-0-387-85461-8_1>, and Eggen (1999) <doi:10.1177/01466219922031365> for more details. 2024-01-16

© 2025 Anaconda, Inc. All Rights Reserved. (v4.0.7) Legal | Privacy Policy