r-mra
|
public |
Accomplishes mark-recapture analysis with covariates. Models available include the Cormack-Jolly-Seber open population (Cormack (1972) <doi:10.2307/2556151>; Jolly (1965) <doi:10.2307/2333826>; Seber (1965) <doi:10.2307/2333827>) and Huggin's (1989) <doi:10.2307/2336377> closed population. Link functions include logit, sine, and hazard. Model selection, model averaging, plot, and simulation routines included. Open population size by the Horvitz-Thompson (1959) <doi:10.2307/2280784> estimator.
|
2024-01-16 |
r-move
|
public |
Contains functions to access movement data stored in 'movebank.org' as well as tools to visualize and statistically analyze animal movement data, among others functions to calculate dynamic Brownian Bridge Movement Models. Move helps addressing movement ecology questions.
|
2024-01-16 |
r-mpath
|
public |
Algorithms compute robust estimators for loss functions in the concave convex (CC) family by the iteratively reweighted convex optimization (IRCO), an extension of the iteratively reweighted least squares (IRLS). The IRCO reduces the weight of the observation that leads to a large loss; it also provides weights to help identify outliers. Applications include robust (penalized) generalized linear models and robust support vector machines. The package also contains penalized Poisson, negative binomial, zero-inflated Poisson, zero-inflated negative binomial regression models and robust models with non-convex loss functions. Wang et al. (2014) <doi:10.1002/sim.6314>, Wang et al. (2015) <doi:10.1002/bimj.201400143>, Wang et al. (2016) <doi:10.1177/0962280214530608>, Wang (2021) <doi:10.1007/s11749-021-00770-2>, Wang (2020) <arXiv:2010.02848>.
|
2024-01-16 |
r-mptinr
|
public |
Provides a user-friendly way for the analysis of multinomial processing tree (MPT) models (e.g., Riefer, D. M., and Batchelder, W. H. [1988]. Multinomial modeling and the measurement of cognitive processes. Psychological Review, 95, 318-339) for single and multiple datasets. The main functions perform model fitting and model selection. Model selection can be done using AIC, BIC, or the Fisher Information Approximation (FIA) a measure based on the Minimum Description Length (MDL) framework. The model and restrictions can be specified in external files or within an R script in an intuitive syntax or using the context-free language for MPTs. The 'classical' .EQN file format for model files is also supported. Besides MPTs, this package can fit a wide variety of other cognitive models such as SDT models (see fit.model). It also supports multicore fitting and FIA calculation (using the snowfall package), can generate or bootstrap data for simulations, and plot predicted versus observed data.
|
2024-01-16 |
r-mpsem
|
public |
Computational tools to represent phylogenetic signals using adapted eigenvector maps.
|
2024-01-16 |
r-mpmi
|
public |
Uses a kernel smoothing approach to calculate Mutual Information for comparisons between all types of variables including continuous vs continuous, continuous vs discrete and discrete vs discrete. Uses a nonparametric bias correction giving Bias Corrected Mutual Information (BCMI). Implemented efficiently in Fortran 95 with OpenMP and suited to large genomic datasets.
|
2024-01-16 |
r-mousetrap
|
public |
Mouse-tracking, the analysis of mouse movements in computerized experiments, is a method that is becoming increasingly popular in the cognitive sciences. The mousetrap package offers functions for importing, preprocessing, analyzing, aggregating, and visualizing mouse-tracking data. An introduction into mouse-tracking analyses using mousetrap can be found in Wulff, Kieslich, Henninger, Haslbeck, & Schulte-Mecklenbeck (2023) <doi:10.31234/osf.io/v685r> (preprint: <https://osf.io/preprints/psyarxiv/v685r>).
|
2024-01-16 |
r-movehmm
|
public |
Provides tools for animal movement modelling using hidden Markov models. These include processing of tracking data, fitting hidden Markov models to movement data, visualization of data and fitted model, decoding of the state process, etc. <doi:10.1111/2041-210X.12578>.
|
2024-01-16 |
r-mp
|
public |
Multidimensional projection techniques are used to create two dimensional representations of multidimensional data sets.
|
2024-01-16 |
r-morpho
|
public |
A toolset for Geometric Morphometrics and mesh processing. This includes (among other stuff) mesh deformations based on reference points, permutation tests, detection of outliers, processing of sliding semi-landmarks and semi-automated surface landmark placement.
|
2024-01-16 |
r-monreg
|
public |
Estimates monotone regression and variance functions in a nonparametric model, based on Dette, Holger, Neumeyer, and Pilz (2006) <doi:10.3150/bj/1151525131>.
|
2024-01-16 |
r-monopoly
|
public |
Functions for fitting monotone polynomials to data. Detailed discussion of the methodologies used can be found in Murray, Mueller and Turlach (2013) <doi:10.1007/s00180-012-0390-5> and Murray, Mueller and Turlach (2016) <doi:10.1080/00949655.2016.1139582>.
|
2024-01-16 |
r-mokken
|
public |
Contains functions for performing Mokken scale analysis on test and questionnaire data. It includes an automated item selection algorithm, and various checks of model assumptions.
|
2024-01-16 |
r-mombf
|
public |
Model selection and averaging for regression and mixtures, inclusing Bayesian model selection and information criteria (BIC, EBIC, AIC, GIC).
|
2024-01-16 |
r-mmrm
|
public |
Mixed models for repeated measures (MMRM) are a popular choice for analyzing longitudinal continuous outcomes in randomized clinical trials and beyond; see Cnaan, Laird and Slasor (1997) <doi:10.1002/(SICI)1097-0258(19971030)16:20%3C2349::AID-SIM667%3E3.0.CO;2-E> for a tutorial and Mallinckrodt, Lane and Schnell (2008) <doi:10.1177/009286150804200402> for a review. This package implements MMRM based on the marginal linear model without random effects using Template Model Builder ('TMB') which enables fast and robust model fitting. Users can specify a variety of covariance matrices, weight observations, fit models with restricted or standard maximum likelihood inference, perform hypothesis testing with Satterthwaite or Kenward-Roger adjustment, and extract least square means estimates by using 'emmeans'.
|
2024-01-16 |
r-monomvn
|
public |
Estimation of multivariate normal (MVN) and student-t data of arbitrary dimension where the pattern of missing data is monotone. See Pantaleo and Gramacy (2010) <arXiv:0907.2135>. Through the use of parsimonious/shrinkage regressions (plsr, pcr, lasso, ridge, etc.), where standard regressions fail, the package can handle a nearly arbitrary amount of missing data. The current version supports maximum likelihood inference and a full Bayesian approach employing scale-mixtures for Gibbs sampling. Monotone data augmentation extends this Bayesian approach to arbitrary missingness patterns. A fully functional standalone interface to the Bayesian lasso (from Park & Casella), Normal-Gamma (from Griffin & Brown), Horseshoe (from Carvalho, Polson, & Scott), and ridge regression with model selection via Reversible Jump, and student-t errors (from Geweke) is also provided.
|
2024-01-16 |
r-mongolite
|
public |
High-performance MongoDB client based on 'mongo-c-driver' and 'jsonlite'. Includes support for aggregation, indexing, map-reduce, streaming, encryption, enterprise authentication, and GridFS. The online user manual provides an overview of the available methods in the package: <https://jeroen.github.io/mongolite/>.
|
2024-01-16 |
r-monetdb.r
|
public |
Allows to pull data from MonetDB into R.
|
2024-01-16 |
r-momtrunc
|
public |
It computes arbitrary products moments (mean vector and variance-covariance matrix), for some double truncated (and folded) multivariate distributions. These distributions belong to the family of selection elliptical distributions, which includes well known skewed distributions as the unified skew-t distribution (SUT) and its particular cases as the extended skew-t (EST), skew-t (ST) and the symmetric student-t (T) distribution. Analogous normal cases unified skew-normal (SUN), extended skew-normal (ESN), skew-normal (SN), and symmetric normal (N) are also included. Density, probabilities and random deviates are also offered for these members.
|
2024-01-16 |
r-modelmetrics
|
public |
Collection of metrics for evaluating models written in C++ using 'Rcpp'. Popular metrics include area under the curve, log loss, root mean square error, etc.
|
2024-01-16 |
r-mnormt
|
None |
Functions are provided for computing the density and the distribution function of d-dimensional normal and "t" random variables, possibly truncated (on one side or two sides), and for generating random vectors sampled from these distributions, except sampling from the truncated "t". Moments of arbitrary order of a multivariate truncated normal are computed, and converted to cumulants up to order 4. Probabilities are computed via non-Monte Carlo methods; different routines are used in the case d=1, d=2, d=3, d>3, if d denotes the dimensionality.
|
2024-01-16 |
r-mnp
|
public |
Fits the Bayesian multinomial probit model via Markov chain Monte Carlo. The multinomial probit model is often used to analyze the discrete choices made by individuals recorded in survey data. Examples where the multinomial probit model may be useful include the analysis of product choice by consumers in market research and the analysis of candidate or party choice by voters in electoral studies. The MNP package can also fit the model with different choice sets for each individual, and complete or partial individual choice orderings of the available alternatives from the choice set. The estimation is based on the efficient marginal data augmentation algorithm that is developed by Imai and van Dyk (2005). "A Bayesian Analysis of the Multinomial Probit Model Using the Data Augmentation." Journal of Econometrics, Vol. 124, No. 2 (February), pp. 311-334. <doi:10.1016/j.jeconom.2004.02.002> Detailed examples are given in Imai and van Dyk (2005). "MNP: R Package for Fitting the Multinomial Probit Model." Journal of Statistical Software, Vol. 14, No. 3 (May), pp. 1-32. <doi:10.18637/jss.v014.i03>.
|
2024-01-16 |
r-modelltest
|
public |
An implementation of the cross-validated difference in means (CVDM) test by Desmarais and Harden (2014) <doi:10.1007/s11135-013-9884-7> (see also Harden and Desmarais, 2011 <doi:10.1177/1532440011408929>) and the cross-validated median fit (CVMF) test by Desmarais and Harden (2012) <doi:10.1093/pan/mpr042>. These tests use leave-one-out cross-validated log-likelihoods to assist in selecting among model estimations. You can also utilize data from Golder (2010) <doi:10.1177/0010414009341714> and Joshi & Mason (2008) <doi:10.1177/0022343308096155> that are included to facilitate examples from real-world analysis.
|
2024-01-16 |
r-mlpack
|
public |
A fast, flexible machine learning library, written in C++, that aims to provide fast, extensible implementations of cutting-edge machine learning algorithms. See also Curtin et al. (2023) <doi:10.21105/joss.05026>.
|
2024-01-16 |
r-mmsample
|
public |
Subset a control group to match an intervention group on a set of features using multivariate matching and propensity score calipers. Based on methods in Rosenbaum and Rubin (1985).
|
2024-01-16 |
r-mlt
|
public |
Likelihood-based estimation of conditional transformation models via the most likely transformation approach described in Hothorn et al. (2018) <DOI:10.1111/sjos.12291> and Hothorn (2020) <DOI:10.18637/jss.v092.i01>.
|
2024-01-16 |
r-mmapcharr
|
public |
Uses memory-mapping to enable the random access of elements of a text file of characters separated by characters as if it were a simple R(cpp) matrix.
|
2024-01-16 |
r-mmeta
|
public |
Multiple 2 by 2 tables often arise in meta-analysis which combines statistical evidence from multiple studies. Two risks within the same study are possibly correlated because they share some common factors such as environment and population structure. This package implements a set of novel Bayesian approaches for multivariate meta analysis when the risks within the same study are independent or correlated. The exact posterior inference of odds ratio, relative risk, and risk difference given either a single 2 by 2 table or multiple 2 by 2 tables is provided. Luo, Chen, Su, Chu, (2014) <doi:10.18637/jss.v056.i11>, Chen, Luo, (2011) <doi:10.1002/sim.4248>, Chen, Chu, Luo, Nie, Chen, (2015) <doi:10.1177/0962280211430889>, Chen, Luo, Chu, Su, Nie, (2014) <doi:10.1080/03610926.2012.700379>, Chen, Luo, Chu, Wei, (2013) <doi:10.1080/19466315.2013.791483>.
|
2024-01-16 |
r-mmap
|
public |
R interface to POSIX mmap and Window's MapViewOfFile.
|
2024-01-16 |
r-mlr3mbo
|
public |
A modern and flexible approach to Bayesian Optimization / Model Based Optimization building on the 'bbotk' package. 'mlr3mbo' is a toolbox providing both ready-to-use optimization algorithms as well as their fundamental building blocks allowing for straightforward implementation of custom algorithms. Single- and multi-objective optimization is supported as well as mixed continuous, categorical and conditional search spaces. Moreover, using 'mlr3mbo' for hyperparameter optimization of machine learning models within the 'mlr3' ecosystem is straightforward via 'mlr3tuning'. Examples of ready-to-use optimization algorithms include Efficient Global Optimization by Jones et al. (1998) <doi:10.1023/A:1008306431147>, ParEGO by Knowles (2006) <doi:10.1109/TEVC.2005.851274> and SMS-EGO by Ponweiser et al. (2008) <doi:10.1007/978-3-540-87700-4_78>.
|
2024-01-16 |
r-mmand
|
public |
Provides tools for performing mathematical morphology operations, such as erosion and dilation, on data of arbitrary dimensionality. Can also be used for finding connected components, resampling, filtering, smoothing and other image processing-style operations.
|
2024-01-16 |
r-mm4lmm
|
public |
The main function MMEst() performs (Restricted) Maximum Likelihood in a variance component mixed models using a Min-Max (MM) algorithm (Laporte, F., Charcosset, A. & Mary-Huard, T. (2022) <doi:10.1371/journal.pcbi.1009659>).
|
2024-01-16 |
r-mlr3misc
|
public |
Frequently used helper functions and assertions used in 'mlr3' and its companion packages. Comes with helper functions for functional programming, for printing, to work with 'data.table', as well as some generally useful 'R6' classes. This package also supersedes the package 'BBmisc'.
|
2024-01-16 |
r-mixtools
|
public |
Analyzes finite mixture models for various parametric and semiparametric settings. This includes mixtures of parametric distributions (normal, multivariate normal, multinomial, gamma), various Reliability Mixture Models (RMMs), mixtures-of-regressions settings (linear regression, logistic regression, Poisson regression, linear regression with changepoints, predictor-dependent mixing proportions, random effects regressions, hierarchical mixtures-of-experts), and tools for selecting the number of components (bootstrapping the likelihood ratio test statistic, mixturegrams, and model selection criteria). Bayesian estimation of mixtures-of-linear-regressions models is available as well as a novel data depth method for obtaining credible bands. This package is based upon work supported by the National Science Foundation under Grant No. SES-0518772 and the Chan Zuckerberg Initiative: Essential Open Source Software for Science (Grant No. 2020-255193).
|
2024-01-16 |
r-mlegp
|
public |
Maximum likelihood Gaussian process modeling for univariate and multi-dimensional outputs with diagnostic plots following Santner et al (2003) <doi:10.1007/978-1-4757-3799-8>. Contact the maintainer for a package version that includes sensitivity analysis.
|
2024-01-16 |
r-mlecens
|
public |
We provide functions to compute the nonparametric maximum likelihood estimator (MLE) for the bivariate distribution of (X,Y), when realizations of (X,Y) cannot be observed directly. To be more precise, we consider the situation where we observe a set of rectangles in R^2 that are known to contain the unobservable realizations of (X,Y). We compute the MLE based on such a set of rectangles. The methods can also be used for univariate censored data (see data set 'cosmesis'), and for censored data with competing risks (see data set 'menopause'). We also provide functions to visualize the observed data and the MLE.
|
2024-01-16 |
r-mlbench
|
public |
A collection of artificial and real-world machine learning benchmark problems, including, e.g., several data sets from the UCI repository.
|
2024-01-16 |
r-mixr
|
public |
Performs maximum likelihood estimation for finite mixture models for families including Normal, Weibull, Gamma and Lognormal by using EM algorithm, together with Newton-Raphson algorithm or bisection method when necessary. It also conducts mixture model selection by using information criteria or bootstrap likelihood ratio test. The data used for mixture model fitting can be raw data or binned data. The model fitting process is accelerated by using R package 'Rcpp'.
|
2024-01-16 |
r-mkde
|
public |
Provides functions to compute and visualize movement-based kernel density estimates (MKDEs) for animal utilization distributions in 2 or 3 spatial dimensions.
|
2024-01-16 |
r-mixture
|
public |
An implementation of 14 parsimonious mixture models for model-based clustering or model-based classification. Gaussian, Student's t, generalized hyperbolic, variance-gamma or skew-t mixtures are available. All approaches work with missing data. Celeux and Govaert (1995) <doi:10.1016/0031-3203(94)00125-6>, Browne and McNicholas (2014) <doi:10.1007/s11634-013-0139-1>, Browne and McNicholas (2015) <doi:10.1002/cjs.11246>.
|
2024-01-16 |
r-mixl
|
public |
Specification and estimation of multinomial logit models. Large datasets and complex models are supported, with an intuitive syntax. Multinomial Logit Models, Mixed models, random coefficients and Hybrid Choice are all supported. For more information, see Molloy et al. (2019) <doi:10.3929/ethz-b-000334289>.
|
2024-01-16 |
r-mixak
|
public |
Contains a mixture of statistical methods including the MCMC methods to analyze normal mixtures. Additionally, model based clustering methods are implemented to perform classification based on (multivariate) longitudinal (or otherwise correlated) data. The basis for such clustering is a mixture of multivariate generalized linear mixed models.
|
2024-01-16 |
r-mixsqp
|
public |
Provides an optimization method based on sequential quadratic programming (SQP) for maximum likelihood estimation of the mixture proportions in a finite mixture model where the component densities are known. The algorithm is expected to obtain solutions that are at least as accurate as the state-of-the-art MOSEK interior-point solver (called by function "KWDual" in the 'REBayes' package), and they are expected to arrive at solutions more quickly when the number of samples is large and the number of mixture components is not too large. This implements the "mix-SQP" algorithm, with some improvements, described in Y. Kim, P. Carbonetto, M. Stephens & M. Anitescu (2020) <DOI:10.1080/10618600.2019.1689985>.
|
2024-01-16 |
r-mixsim
|
public |
The utility of this package is in simulating mixtures of Gaussian distributions with different levels of overlap between mixture components. Pairwise overlap, defined as a sum of two misclassification probabilities, measures the degree of interaction between components and can be readily employed to control the clustering complexity of datasets simulated from mixtures. These datasets can then be used for systematic performance investigation of clustering and finite mixture modeling algorithms. Among other capabilities of 'MixSim', there are computing the exact overlap for Gaussian mixtures, simulating Gaussian and non-Gaussian data, simulating outliers and noise variables, calculating various measures of agreement between two partitionings, and constructing parallel distribution plots for the graphical display of finite mixture models.
|
2024-01-16 |
r-mixmatrix
|
public |
Provides sampling and density functions for matrix variate normal, t, and inverted t distributions; ML estimation for matrix variate normal and t distributions using the EM algorithm, including some restrictions on the parameters; and classification by linear and quadratic discriminant analysis for matrix variate normal and t distributions described in Thompson et al. (2019) <doi:10.1080/10618600.2019.1696208>. Performs clustering with matrix variate normal and t mixture models.
|
2024-01-16 |
r-mirtcat
|
public |
Provides tools to generate HTML interfaces for adaptive and non-adaptive tests using the shiny package (Chalmers (2016) <doi:10.18637/jss.v071.i05>). Suitable for applying unidimensional and multidimensional computerized adaptive tests (CAT) using item response theory methodology and for creating simple questionnaires forms to collect response data directly in R. Additionally, optimal test designs (e.g., "shadow testing") are supported for tests that contain a large number of item selection constraints. Finally, package contains tools useful for performing Monte Carlo simulations for studying test item banks.
|
2024-01-16 |
r-mirt
|
public |
Analysis of discrete response data using unidimensional and multidimensional item analysis models under the Item Response Theory paradigm (Chalmers (2012) <doi:10.18637/jss.v048.i06>). Exploratory and confirmatory item factor analysis models are estimated with quadrature (EM) or stochastic (MHRM) methods. Confirmatory bi-factor and two-tier models are available for modeling item testlets using dimension reduction EM algorithms, while multiple group analyses and mixed effects designs are included for detecting differential item, bundle, and test functioning, and for modeling item and person covariates. Finally, latent class models such as the DINA, DINO, multidimensional latent class, mixture, and zero-inflated response models are supported.
|
2024-01-16 |
r-mixedmem
|
public |
Fits mixed membership models with discrete multivariate data (with or without repeated measures) following the general framework of Erosheva et al (2004). This package uses a Variational EM approach by approximating the posterior distribution of latent memberships and selecting hyperparameters through a pseudo-MLE procedure. Currently supported data types are Bernoulli, multinomial and rank (Plackett-Luce). The extended GoM model with fixed stayers from Erosheva et al (2007) is now also supported. See Airoldi et al (2014) for other examples of mixed membership models.
|
2024-01-16 |
r-mix
|
public |
Estimation/multiple imputation programs for mixed categorical and continuous data.
|
2024-01-16 |
r-misssbm
|
public |
When a network is partially observed (here, NAs in the adjacency matrix rather than 1 or 0 due to missing information between node pairs), it is possible to account for the underlying process that generates those NAs. 'missSBM', presented in 'Barbillon, Chiquet and Tabouy' (2022) <doi:10.18637/jss.v101.i12>, adjusts the popular stochastic block model from network data sampled under various missing data conditions, as described in 'Tabouy, Barbillon and Chiquet' (2019) <doi:10.1080/01621459.2018.1562934>.
|
2024-01-16 |