About Anaconda Help Download Anaconda

r / packages

Package Name Access Summary Updated
r-rfast public A collection of fast (utility) functions for data analysis. Column- and row- wise means, medians, variances, minimums, maximums, many t, F and G-square tests, many regressions (normal, logistic, Poisson), are some of the many fast functions. References: a) Tsagris M., Papadakis M. (2018). Taking R to its limits: 70+ tips. PeerJ Preprints 6:e26605v1 <doi:10.7287/peerj.preprints.26605v1>. b) Tsagris M. and Papadakis M. (2018). Forward regression in R: from the extreme slow to the extreme fast. Journal of Data Science, 16(4): 771--780. <doi:10.6339/JDS.201810_16(4).00006>. 2025-04-22
r-rcppziggurat public The Ziggurat generator for normally distributed random numbers, originally proposed by Marsaglia and Tsang (2000, <doi:10.18637/jss.v005.i08>) has been improved upon a few times starting with Leong et al (2005, <doi:10.18637/jss.v012.i07>). This package provides an aggregation in order to compare different implementations in order to provide an 'faster but good enough' alternative for use with R and C++ code. 2025-04-22
r-rbibutils public Read and write 'Bibtex' files. Convert between bibliography formats, including 'Bibtex', 'Biblatex', 'PubMed', 'Endnote', and 'Bibentry'. Includes a port of the 'bibutils' utilities by Chris Putnam <https://sourceforge.net/projects/bibutils/>. Supports all bibliography formats and character encodings implemented in 'bibutils'. 2025-04-22
r-ragg public Anti-Grain Geometry (AGG) is a high-quality and high-performance 2D drawing library. The 'ragg' package provides a set of graphic devices based on AGG to use as alternative to the raster devices provided through the 'grDevices' package. 2025-04-22
r-proj public Currently non-operational, a harmless wrapper to allow package 'reproj' to install and function while relying on the 'proj4' package. 2025-04-22
r-pomdpsolve public Installs an updated version of 'pomdp-solve', a program to solve Partially Observable Markov Decision Processes (POMDPs) using a variety of exact and approximate value iteration algorithms. A convenient R infrastructure is provided in the separate package pomdp. Kaelbling, Littman and Cassandra (1998) <doi:10.1016/S0004-3702(98)00023-X>. 2025-04-22
r-pkgcache public Metadata and package cache for CRAN-like repositories. This is a utility package to be used by package management tools that want to take advantage of caching. 2025-04-22
r-phangorn public Allows for estimation of phylogenetic trees and networks using Maximum Likelihood, Maximum Parsimony, distance methods and Hadamard conjugation (Schliep 2011). Offers methods for tree comparison, model selection and visualization of phylogenetic networks as described in Schliep et al. (2017). 2025-04-22
r-pec public Validation of risk predictions obtained from survival models and competing risk models based on censored data using inverse weighting and cross-validation. Most of the 'pec' functionality has been moved to 'riskRegression'. 2025-04-22
r-msm public Functions for fitting continuous-time Markov and hidden Markov multi-state models to longitudinal data. Designed for processes observed at arbitrary times in continuous time (panel data) but some other observation schemes are supported. Both Markov transition rates and the hidden Markov output process can be modelled in terms of covariates, which may be constant or piecewise-constant in time. 2025-04-22
r-morpho public A toolset for Geometric Morphometrics and mesh processing. This includes (among other stuff) mesh deformations based on reference points, permutation tests, detection of outliers, processing of sliding semi-landmarks and semi-automated surface landmark placement. 2025-04-22
r-mets public Implementation of various statistical models for multivariate event history data <doi:10.1007/s10985-013-9244-x>. Including multivariate cumulative incidence models <doi:10.1002/sim.6016>, and bivariate random effects probit models (Liability models) <doi:10.1016/j.csda.2015.01.014>. Also contains two-stage binomial modelling that can do pairwise odds-ratio dependence modelling based marginal logistic regression models. This is an alternative to the alternating logistic regression approach (ALR). 2025-04-22
r-meanshiftr public Performs mean shift classification using linear and k-d tree based nearest neighbor implementations for the Gaussian, Epanechnikov, and biweight product kernels. 2025-04-22
r-meanr public Sentiment analysis is a popular technique in text mining that attempts to determine the emotional state of some text. We provide a new implementation of a common method for computing sentiment, whereby words are scored as positive or negative according to a dictionary lookup. Then the sum of those scores is returned for the document. We use the 'Hu' and 'Liu' sentiment dictionary ('Hu' and 'Liu', 2004) <doi:10.1145/1014052.1014073> for determining sentiment. The scoring function is 'vectorized' by document, and scores for multiple documents are computed in parallel via 'OpenMP'. 2025-04-22
r-mdfs public Functions for MultiDimensional Feature Selection (MDFS): calculating multidimensional information gains, scoring variables, finding important variables, plotting selection results. This package includes an optional CUDA implementation that speeds up information gain calculation using NVIDIA GPGPUs. R. Piliszek et al. (2019) <doi:10.32614/RJ-2019-019>. 2025-04-22
r-mda public Mixture and flexible discriminant analysis, multivariate adaptive regression splines (MARS), BRUTO, and vector-response smoothing splines. Hastie, Tibshirani and Friedman (2009) "Elements of Statistical Learning (second edition, chap 12)" Springer, New York. 2025-04-22
r-mcr public Regression methods to quantify the relation between two measurement methods are provided by this package. In particular it addresses regression problems with errors in both variables and without repeated measurements. It implements the CLSI recommendations (see J. A. Budd et al. (2018, <https://clsi.org/standards/products/method-evaluation/documents/ep09/>) for analytical method comparison and bias estimation using patient samples. Furthermore, algorithms for Theil-Sen and equivariant Passing-Bablok estimators are implemented, see F. Dufey (2020, <doi:10.1515/ijb-2019-0157>) and J. Raymaekers and F. Dufey (2022, <arXiv:2202:08060>). A comprehensive overview over the implemented methods and references can be found in the manual pages "mcr-package" and "mcreg". 2025-04-22
r-mco public A collection of function to solve multiple criteria optimization problems using genetic algorithms (NSGA-II). Also included is a collection of test functions. 2025-04-22
r-mcmcprecision public Estimates the precision of transdimensional Markov chain Monte Carlo (MCMC) output, which is often used for Bayesian analysis of models with different dimensionality (e.g., model selection). Transdimensional MCMC (e.g., reversible jump MCMC) relies on sampling a discrete model-indicator variable to estimate the posterior model probabilities. If only few switches occur between the models, precision may be low and assessment based on the assumption of independent samples misleading. Based on the observed transition matrix of the indicator variable, the method of Heck, Overstall, Gronau, & Wagenmakers (2019, Statistics & Computing, 29, 631-643) <doi:10.1007/s11222-018-9828-0> draws posterior samples of the stationary distribution to (a) assess the uncertainty in the estimated posterior model probabilities and (b) estimate the effective sample size of the MCMC output. 2025-04-22
r-mcmcse public Provides tools for computing Monte Carlo standard errors (MCSE) in Markov chain Monte Carlo (MCMC) settings. MCSE computation for expectation and quantile estimators is supported as well as multivariate estimations. The package also provides functions for computing effective sample size and for plotting Monte Carlo estimates versus sample size. 2025-04-22
r-mcmcpack public Contains functions to perform Bayesian inference using posterior simulation for a number of statistical models. Most simulation is done in compiled C++ written in the Scythe Statistical Library Version 1.0.3. All models return 'coda' mcmc objects that can then be summarized using the 'coda' package. Some useful utility functions such as density functions, pseudo-random number generators for statistical distributions, a general purpose Metropolis sampling algorithm, and tools for visualization are provided. 2025-04-22
r-mcmc public Simulates continuous distributions of random vectors using Markov chain Monte Carlo (MCMC). Users specify the distribution by an R function that evaluates the log unnormalized density. Algorithms are random walk Metropolis algorithm (function metrop), simulated tempering (function temper), and morphometric random walk Metropolis (Johnson and Geyer, 2012, <doi:10.1214/12-AOS1048>, function morph.metrop), which achieves geometric ergodicity by change of variable. 2025-04-22
r-mcglm public Fitting multivariate covariance generalized linear models (McGLMs) to data. McGLM is a general framework for non-normal multivariate data analysis, designed to handle multivariate response variables, along with a wide range of temporal and spatial correlation structures defined in terms of a covariance link function combined with a matrix linear predictor involving known matrices. The models take non-normality into account in the conventional way by means of a variance function, and the mean structure is modelled by means of a link function and a linear predictor. The models are fitted using an efficient Newton scoring algorithm based on quasi-likelihood and Pearson estimating functions, using only second-moment assumptions. This provides a unified approach to a wide variety of different types of response variables and covariance structures, including multivariate extensions of repeated measures, time series, longitudinal, spatial and spatio-temporal structures. The package offers a user-friendly interface for fitting McGLMs similar to the glm() R function. See Bonat (2018) <doi:10.18637/jss.v084.i04>, for more information and examples. 2025-04-22
r-mclust public Gaussian finite mixture models fitted via EM algorithm for model-based clustering, classification, and density estimation, including Bayesian regularization, dimension reduction for visualisation, and resampling-based inference. 2025-04-22
r-mcclust public Implements methods for processing a sample of (hard) clusterings, e.g. the MCMC output of a Bayesian clustering model. Among them are methods that find a single best clustering to represent the sample, which are based on the posterior similarity matrix or a relabelling algorithm. 2025-04-22

© 2025 Anaconda, Inc. All Rights Reserved. (v4.2.2) Legal | Privacy Policy