About Anaconda Help Download Anaconda

r / packages

Package Name Access Summary Updated
r-chngpt public Threshold regression models are also called two-phase regression, broken-stick regression, split-point regression, structural change models, and regression kink models, with and without interaction terms. Methods for both continuous and discontinuous threshold models are included, but the support for the former is much greater. This package is described in Fong, Huang, Gilbert and Permar (2017) <DOI:10.1186/s12859-017-1863-x> and the package vignette. 2025-04-22
r-changepoint.np public Implements the multiple changepoint algorithm PELT with a nonparametric cost function based on the empirical distribution of the data. This package extends the changepoint package (see Killick, R and Eckley, I (2014) <doi:10.18637/jss.v058.i03> ). 2025-04-22
r-cellwise public Tools for detecting cellwise outliers and robust methods to analyze data which may contain them. Contains the implementation of the algorithms described in Rousseeuw and Van den Bossche (2018) <doi:10.1080/00401706.2017.1340909> (open access) Hubert et al. (2019) <doi:10.1080/00401706.2018.1562989> (open access), Raymaekers and Rousseeuw (2021) <doi:10.1080/00401706.2019.1677270> (open access), Raymaekers and Rousseeuw (2021) <doi:10.1007/s10994-021-05960-5> (open access), Raymaekers and Rousseeuw (2021) <doi:10.52933/jdssv.v1i3.18> (open access), Raymaekers and Rousseeuw (2022) <arXiv:2207.13493> (open access) Rousseeuw (2022) <doi:10.1016/j.ecosta.2023.01.007> (open access). Examples can be found in the vignettes: "DDC_examples", "MacroPCA_examples", "wrap_examples", "transfo_examples", "DI_examples", "cellMCD_examples" , "Correspondence_analysis_examples", and "cellwise_weights_examples". 2025-04-22
r-cdm public Functions for cognitive diagnosis modeling and multidimensional item response modeling for dichotomous and polytomous item responses. This package enables the estimation of the DINA and DINO model (Junker & Sijtsma, 2001, <doi:10.1177/01466210122032064>), the multiple group (polytomous) GDINA model (de la Torre, 2011, <doi:10.1007/s11336-011-9207-7>), the multiple choice DINA model (de la Torre, 2009, <doi:10.1177/0146621608320523>), the general diagnostic model (GDM; von Davier, 2008, <doi:10.1348/000711007X193957>), the structured latent class model (SLCA; Formann, 1992, <doi:10.1080/01621459.1992.10475229>) and regularized latent class analysis (Chen, Li, Liu, & Ying, 2017, <doi:10.1007/s11336-016-9545-6>). See George, Robitzsch, Kiefer, Gross, and Uenlue (2017) <doi:10.18637/jss.v074.i02> or Robitzsch and George (2019, <doi:10.1007/978-3-030-05584-4_26>) for further details on estimation and the package structure. For tutorials on how to use the CDM package see George and Robitzsch (2015, <doi:10.20982/tqmp.11.3.p189>) as well as Ravand and Robitzsch (2015). 2025-04-22
r-cba public Implements clustering techniques such as Proximus and Rock, utility functions for efficient computation of cross distances and data manipulation. 2025-04-22
r-castor public Efficient phylogenetic analyses on massive phylogenies comprising up to millions of tips. Functions include pruning, rerooting, calculation of most-recent common ancestors, calculating distances from the tree root and calculating pairwise distances. Calculation of phylogenetic signal and mean trait depth (trait conservatism), ancestral state reconstruction and hidden character prediction of discrete characters, simulating and fitting models of trait evolution, fitting and simulating diversification models, dating trees, comparing trees, and reading/writing trees in Newick format. Citation: Louca, Stilianos and Doebeli, Michael (2017) <doi:10.1093/bioinformatics/btx701>. 2025-04-22
r-carat public Provides functions and command-line user interface to generate allocation sequence by covariate-adaptive randomization for clinical trials. The package currently supports six covariate-adaptive randomization procedures. Three hypothesis testing methods that are valid and robust under covariate-adaptive randomization are also available in the package to facilitate the inference for treatment effect under the included randomization procedures. Additionally, the package provides comprehensive and efficient tools to allow one to evaluate and compare the performance of randomization procedures and tests based on various criteria. See Ma W, Ye X, Tu F, and Hu F (2023) <doi: 10.18637/jss.v107.i02> for details. 2025-04-22
r-cartography public Create and integrate maps in your R workflow. This package helps to design cartographic representations such as proportional symbols, choropleth, typology, flows or discontinuities maps. It also offers several features that improve the graphic presentation of maps, for instance, map palettes, layout elements (scale, north arrow, title...), labels or legends. See Giraud and Lambert (2017) <doi:10.1007/978-3-319-57336-6_13>. 2025-04-22
r-carbayesst public Implements a class of univariate and multivariate spatio-temporal generalised linear mixed models for areal unit data, with inference in a Bayesian setting using Markov chain Monte Carlo (MCMC) simulation. The response variable can be binomial, Gaussian, or Poisson, but for some models only the binomial and Poisson data likelihoods are available. The spatio-temporal autocorrelation is modelled by random effects, which are assigned conditional autoregressive (CAR) style prior distributions. A number of different random effects structures are available, including models similar to Rushworth et al. (2014) <doi:10.1016/j.sste.2014.05.001>. Full details are given in the vignette accompanying this package. The creation and development of this package was supported by the Engineering and Physical Sciences Research Council (EPSRC) grants EP/J017442/1 and EP/T004878/1 and the Medical Research Council (MRC) grant MR/L022184/1. 2025-04-22
r-carbayes public Implements a class of univariate and multivariate spatial generalised linear mixed models for areal unit data, with inference in a Bayesian setting using Markov chain Monte Carlo (MCMC) simulation using a single or multiple Markov chains. The response variable can be binomial, Gaussian, multinomial, Poisson or zero-inflated Poisson (ZIP), and spatial autocorrelation is modelled by a set of random effects that are assigned a conditional autoregressive (CAR) prior distribution. A number of different models are available for univariate spatial data, including models with no random effects as well as random effects modelled by different types of CAR prior, including the BYM model (Besag et al., 1991, <doi:10.1007/BF00116466>) and Leroux model (Leroux et al., 2000, <doi:10.1007/978-1-4612-1284-3_4>). Additionally, a multivariate CAR (MCAR) model for multivariate spatial data is available, as is a two-level hierarchical model for modelling data relating to individuals within areas. Full details are given in the vignette accompanying this package. The initial creation of this package was supported by the Economic and Social Research Council (ESRC) grant RES-000-22-4256, and on-going development has been supported by the Engineering and Physical Science Research Council (EPSRC) grant EP/J017442/1, ESRC grant ES/K006460/1, Innovate UK / Natural Environment Research Council (NERC) grant NE/N007352/1 and the TB Alliance. 2025-04-22
r-calculus public Efficient C++ optimized functions for numerical and symbolic calculus as described in Guidotti (2022) <doi:10.18637/jss.v104.i05>. It includes basic arithmetic, tensor calculus, Einstein summing convention, fast computation of the Levi-Civita symbol and generalized Kronecker delta, Taylor series expansion, multivariate Hermite polynomials, high-order derivatives, ordinary differential equations, differential operators (Gradient, Jacobian, Hessian, Divergence, Curl, Laplacian) and numerical integration in arbitrary orthogonal coordinate systems: cartesian, polar, spherical, cylindrical, parabolic or user defined by custom scale factors. 2025-04-22
r-c50 public C5.0 decision trees and rule-based models for pattern recognition that extend the work of Quinlan (1993, ISBN:1-55860-238-0). 2025-04-22
r-bssm public Efficient methods for Bayesian inference of state space models via Markov chain Monte Carlo (MCMC) based on parallel importance sampling type weighted estimators (Vihola, Helske, and Franks, 2020, <doi:10.1111/sjos.12492>), particle MCMC, and its delayed acceptance version. Gaussian, Poisson, binomial, negative binomial, and Gamma observation densities and basic stochastic volatility models with linear-Gaussian state dynamics, as well as general non-linear Gaussian models and discretised diffusion models are supported. See Helske and Vihola (2021, <doi:10.32614/RJ-2021-103>) for details. 2025-04-22
r-bspm public Enables binary package installations on Linux distributions. Provides functions to manage packages via the distribution's package manager. Also provides transparent integration with R's install.packages() and a fallback mechanism. When installed as a system package, interacts with the system's package manager without requiring administrative privileges via an integrated D-Bus service; otherwise, uses sudo. Currently, the following backends are supported: DNF, APT, ALPM. 2025-04-22
r-broman public Miscellaneous R functions, including functions related to graphics (mostly for base graphics), permutation tests, running mean/median, and general utilities. 2025-04-22
r-box public A modern module system for R. Organise code into hierarchical, composable, reusable modules, and use it effortlessly across projects via a flexible, declarative dependency loading syntax. 2025-04-22
r-brglm2 public Estimation and inference from generalized linear models based on various methods for bias reduction and maximum penalized likelihood with powers of the Jeffreys prior as penalty. The 'brglmFit' fitting method can achieve reduction of estimation bias by solving either the mean bias-reducing adjusted score equations in Firth (1993) <doi:10.1093/biomet/80.1.27> and Kosmidis and Firth (2009) <doi:10.1093/biomet/asp055>, or the median bias-reduction adjusted score equations in Kenne et al. (2017) <doi:10.1093/biomet/asx046>, or through the direct subtraction of an estimate of the bias of the maximum likelihood estimator from the maximum likelihood estimates as in Cordeiro and McCullagh (1991) <https://www.jstor.org/stable/2345592>. See Kosmidis et al (2020) <doi:10.1007/s11222-019-09860-6> for more details. Estimation in all cases takes place via a quasi Fisher scoring algorithm, and S3 methods for the construction of of confidence intervals for the reduced-bias estimates are provided. In the special case of generalized linear models for binomial and multinomial responses (both ordinal and nominal), the adjusted score approaches to mean and media bias reduction have been found to return estimates with improved frequentist properties, that are also always finite, even in cases where the maximum likelihood estimates are infinite (e.g. complete and quasi-complete separation; see Kosmidis and Firth, 2020 <doi:10.1093/biomet/asaa052>, for a proof for mean bias reduction in logistic regression). 2025-04-22
r-brmsmargins public Calculate Bayesian marginal effects, average marginal effects, and marginal coefficients (also called population averaged coefficients) for models fit using the 'brms' package including fixed effects, mixed effects, and location scale models. These are based on marginal predictions that integrate out random effects if necessary (see for example <doi:10.1186/s12874-015-0046-6> and <doi:10.1111/biom.12707>). 2025-04-22
r-blorr public Tools designed to make it easier for beginner and intermediate users to build and validate binary logistic regression models. Includes bivariate analysis, comprehensive regression output, model fit statistics, variable selection procedures, model validation techniques and a 'shiny' app for interactive model building. 2025-04-22
r-bmisc public These are miscellaneous functions for working with panel data, quantiles, and printing results. For panel data, the package includes functions for making a panel data balanced (that is, dropping missing individuals that have missing observations in any time period), converting id numbers to row numbers, and to treat repeated cross sections as panel data under the assumption of rank invariance. For quantiles, there are functions to make distribution functions from a set of data points (this is particularly useful when a distribution function is created in several steps), to combine distribution functions based on some external weights, and to invert distribution functions. Finally, there are several other miscellaneous functions for obtaining weighted means, weighted distribution functions, and weighted quantiles; to generate summary statistics and their differences for two groups; and to add or drop covariates from formulas. 2025-04-22
r-bma public Package for Bayesian model averaging and variable selection for linear models, generalized linear models and survival models (cox regression). 2025-04-22
r-blockcv public Creating spatially or environmentally separated folds for cross-validation to provide a robust error estimation in spatially structured environments; Investigating and visualising the effective range of spatial autocorrelation in continuous raster covariates and point samples to find an initial realistic distance band to separate training and testing datasets spatially described in Valavi, R. et al. (2019) <doi:10.1111/2041-210X.13107>. 2025-04-22
r-blavaan public Fit a variety of Bayesian latent variable models, including confirmatory factor analysis, structural equation models, and latent growth curve models. References: Merkle & Rosseel (2018) <doi:10.18637/jss.v085.i04>; Merkle et al. (2021) <doi:10.18637/jss.v100.i06>. 2025-04-22
r-blackbox public Performs prediction of a response function from simulated response values, allowing black-box optimization of functions estimated with some error. Includes a simple user interface for such applications, as well as more specialized functions designed to be called by the Migraine software (Rousset and Leblois, 2012 <doi:10.1093/molbev/MSR262>; Leblois et al., 2014 <doi:10.1093/molbev/msu212>; and see URL). The latter functions are used for prediction of likelihood surfaces and implied likelihood ratio confidence intervals, and for exploration of predictor space of the surface. Prediction of the response is based on ordinary Kriging (with residual error) of the input. Estimation of smoothing parameters is performed by generalized cross-validation. 2025-04-22
r-biwavelet public This is a port of the WTC MATLAB package written by Aslak Grinsted and the wavelet program written by Christopher Torrence and Gibert P. Compo. This package can be used to perform univariate and bivariate (cross-wavelet, wavelet coherence, wavelet clustering) analyses. 2025-04-22

© 2025 Anaconda, Inc. All Rights Reserved. (v4.1.0) Legal | Privacy Policy