r-santoku
|
public |
A tool for cutting data into intervals. Allows singleton intervals. Always includes the whole range of data by default. Flexible labelling. Convenience functions for cutting by quantiles etc. Handles dates, times, units and other vectors.
|
2024-01-16 |
r-saturnin
|
public |
Bayesian inference of graphical model structures using spanning trees.
|
2024-01-16 |
r-rxode2random
|
public |
Provides the random number generation (in parallel) needed for 'rxode2' (Wang, Hallow and James (2016) <doi:10.1002/psp4.12052>) and 'nlmixr2' (Fidler et al (2019) <doi:10.1002/psp4.12445>). This split will reduce computational burden of recompiling 'rxode2'.
|
2024-01-16 |
r-satellite
|
public |
Herein, we provide a broad variety of functions which are useful for handling, manipulating, and visualizing satellite-based remote sensing data. These operations range from mere data import and layer handling (eg subsetting), over Raster* typical data wrangling (eg crop, extend), to more sophisticated (pre-)processing tasks typically applied to satellite imagery (eg atmospheric and topographic correction). This functionality is complemented by a full access to the satellite layers' metadata at any stage and the documentation of performed actions in a separate log file. Currently available sensors include Landsat 4-5 (TM), 7 (ETM+), and 8 (OLI/TIRS Combined), and additional compatibility is ensured for the Landsat Global Land Survey data set.
|
2024-01-16 |
r-sapp
|
public |
Functions for statistical analysis of point processes.
|
2024-01-16 |
r-samurais
|
public |
Provides a variety of original and flexible user-friendly statistical latent variable models and unsupervised learning algorithms to segment and represent time-series data (univariate or multivariate), and more generally, longitudinal data, which include regime changes. 'samurais' is built upon the following packages, each of them is an autonomous time-series segmentation approach: Regression with Hidden Logistic Process ('RHLP'), Hidden Markov Model Regression ('HMMR'), Multivariate 'RHLP' ('MRHLP'), Multivariate 'HMMR' ('MHMMR'), Piece-Wise regression ('PWR'). For the advantages/differences of each of them, the user is referred to our mentioned paper references.
|
2024-01-16 |
r-sanitizers
|
public |
Recent gcc and clang compiler versions provide functionality to test for memory violations and other undefined behaviour; this is often referred to as "Address Sanitizer" (or 'ASAN') and "Undefined Behaviour Sanitizer" ('UBSAN'). The Writing R Extension manual describes this in some detail in Section 4.3 title "Checking Memory Access". . This feature has to be enabled in the corresponding binary, eg in R, which is somewhat involved as it also required a current compiler toolchain which is not yet widely available, or in the case of Windows, not available at all (via the common Rtools mechanism). . As an alternative, pre-built Docker containers such as the Rocker container 'r-devel-san' or the multi-purpose container 'r-debug' can be used. . This package then provides a means of testing the compiler setup as the known code failures provides in the sample code here should be detected correctly, whereas a default build of R will let the package pass. . The code samples are based on the examples from the Address Sanitizer Wiki at <https://github.com/google/sanitizers/wiki>.
|
2024-01-16 |
r-rxode2parse
|
public |
Provides the parsing needed for 'rxode2' (Wang, Hallow and James (2016) <doi:10.1002/psp4.12052>). It also provides the 'stan' based advan linear compartment model solutions with gradients (Carpenter et al (2015), <arXiv:1509.07164>) needed in 'nlmixr2' (Fidler et al (2019) <doi:10.1002/psp4.12445>). This split will reduce computational burden of recompiling 'rxode2'.
|
2024-01-16 |
r-samplingvarest
|
public |
Functions to calculate some point estimators and estimate their variance under unequal probability sampling without replacement. Single and two-stage sampling designs are considered. Some approximations for the second-order inclusion probabilities (joint inclusion probabilities) are available (sample and population based). A variety of Jackknife variance estimators are implemented. Almost every function is written in C (compiled) code for faster results. The functions incorporate some performance improvements for faster results with large datasets.
|
2024-01-16 |
r-samplingbigdata
|
public |
Select sampling methods for probability samples using large data sets. This includes spatially balanced sampling in multi-dimensional spaces with any prescribed inclusion probabilities. All implementations are written in C with efficient data structures such as k-d trees that easily scale to several million rows on a modern desktop computer.
|
2024-01-16 |
r-sampling
|
public |
Functions to draw random samples using different sampling schemes are available. Functions are also provided to obtain (generalized) calibration weights, different estimators, as well some variance estimators.
|
2024-01-16 |
r-s2
|
public |
Provides R bindings for Google's s2 library for geometric calculations on the sphere. High-performance constructors and exporters provide high compatibility with existing spatial packages, transformers construct new geometries from existing geometries, predicates provide a means to select geometries based on spatial relationships, and accessors extract information about geometries.
|
2024-01-16 |
r-rzmq
|
None |
Interface to the 'ZeroMQ' lightweight messaging kernel (see <https://zeromq.org/> for more information).
|
2024-01-16 |
r-ryacas
|
public |
Interface to the 'yacas' computer algebra system (<http://www.yacas.org/>).
|
2024-01-16 |
r-rxode2
|
public |
Facilities for running simulations from ordinary differential equation ('ODE') models, such as pharmacometrics and other compartmental models. A compilation manager translates the ODE model into C, compiles it, and dynamically loads the object code into R for improved computational efficiency. An event table object facilitates the specification of complex dosing regimens (optional) and sampling schedules. NB: The use of this package requires both C and Fortran compilers, for details on their use with R please see Section 6.3, Appendix A, and Appendix D in the "R Administration and Installation" manual. Also the code is mostly released under GPL. The 'VODE' and 'LSODA' are in the public domain. The information is available in the inst/COPYRIGHTS.
|
2024-01-16 |
r-rxode2ll
|
public |
Provides the log-likelihoods with gradients from 'stan' (Carpenter et al (2015), <arXiv:1509.07164>) needed for generalized log-likelihood estimation in 'nlmixr2' (Fidler et al (2019) <doi:10.1002/psp4.12445>). This is split of to reduce computational burden of recompiling 'rxode2' (Wang, Hallow and James (2016) <doi:10.1002/psp4.12052>) which runs the 'nlmixr2' models during estimation.
|
2024-01-16 |
r-rxode2et
|
public |
Provides the event table and support functions needed for 'rxode2' (Wang, Hallow and James (2016) <doi:10.1002/psp4.12052>) and 'nlmixr2' (Fidler et al (2019) <doi:10.1002/psp4.12445>). This split will reduce computational burden of recompiling 'rxode2'.
|
2024-01-16 |
r-rwave
|
public |
A set of R functions which provide an environment for the Time-Frequency analysis of 1-D signals (and especially for the wavelet and Gabor transforms of noisy signals). It was originally written for Splus by Rene Carmona, Bruno Torresani, and Wen L. Hwang, first at the University of California at Irvine and then at Princeton University. Credit should also be given to Andrea Wang whose functions on the dyadic wavelet transform are included. Rwave is based on the book: "Practical Time-Frequency Analysis: Gabor and Wavelet Transforms with an Implementation in S", by Rene Carmona, Wen L. Hwang and Bruno Torresani (1998, eBook ISBN:978008053942), Academic Press.
|
2024-01-16 |
r-rwiener
|
public |
Provides Wiener process distribution functions, namely the Wiener first passage time density, CDF, quantile and random functions. Additionally supplies a modelling function (wdm) and further methods for the resulting object.
|
2024-01-16 |
r-rvinecopulib
|
public |
Provides an interface to 'vinecopulib', a C++ library for vine copula modeling. The 'rvinecopulib' package implements the core features of the popular 'VineCopula' package, in particular inference algorithms for both vine copula and bivariate copula models. Advantages over 'VineCopula' are a sleeker and more modern API, improved performances, especially in high dimensions, nonparametric and multi-parameter families, and the ability to model discrete variables. The 'rvinecopulib' package includes 'vinecopulib' as header-only C++ library (currently version 0.6.2). Thus users do not need to install 'vinecopulib' itself in order to use 'rvinecopulib'. Since their initial releases, 'vinecopulib' is licensed under the MIT License, and 'rvinecopulib' is licensed under the GNU GPL version 3.
|
2024-01-16 |
r-rvg
|
public |
Vector Graphics devices for 'Microsoft PowerPoint' and 'Microsoft Excel'. Functions extending package 'officer' are provided to embed 'DrawingML' graphics into 'Microsoft PowerPoint' presentations and 'Microsoft Excel' workbooks.
|
2024-01-16 |
r-rust
|
public |
Uses the generalized ratio-of-uniforms (RU) method to simulate from univariate and (low-dimensional) multivariate continuous distributions. The user specifies the log-density, up to an additive constant. The RU algorithm is applied after relocation of mode of the density to zero, and the user can choose a tuning parameter r. For details see Wakefield, Gelfand and Smith (1991) <DOI:10.1007/BF01889987>, Efficient generation of random variates via the ratio-of-uniforms method, Statistics and Computing (1991) 1, 129-133. A Box-Cox variable transformation can be used to make the input density suitable for the RU method and to improve efficiency. In the multivariate case rotation of axes can also be used to improve efficiency. From version 1.2.0 the 'Rcpp' package <https://cran.r-project.org/package=Rcpp> can be used to improve efficiency.
|
2024-01-16 |
r-ruv
|
public |
Implements the 'RUV' (Remove Unwanted Variation) algorithms. These algorithms attempt to adjust for systematic errors of unknown origin in high-dimensional data. The algorithms were originally developed for use with genomic data, especially microarray data, but may be useful with other types of high-dimensional data as well. These algorithms were proposed in Gagnon-Bartsch and Speed (2012) <doi:10.1093/nar/gkz433>, Gagnon-Bartsch, Jacob and Speed (2013), and Molania, et. al. (2019) <doi:10.1093/nar/gkz433>. The algorithms require the user to specify a set of negative control variables, as described in the references. The algorithms included in this package are 'RUV-2', 'RUV-4', 'RUV-inv', 'RUV-rinv', 'RUV-I', and RUV-III', along with various supporting algorithms.
|
2024-01-16 |
r-rugarch
|
public |
ARFIMA, in-mean, external regressors and various GARCH flavors, with methods for fit, forecast, simulation, inference and plotting.
|
2024-01-16 |
r-rvcg
|
public |
Operations on triangular meshes based on 'VCGLIB'. This package integrates nicely with the R-package 'rgl' to render the meshes processed by 'Rvcg'. The Visualization and Computer Graphics Library (VCG for short) is an open source portable C++ templated library for manipulation, processing and displaying with OpenGL of triangle and tetrahedral meshes. The library, composed by more than 100k lines of code, is released under the GPL license, and it is the base of most of the software tools of the Visual Computing Lab of the Italian National Research Council Institute ISTI <http://vcg.isti.cnr.it>, like 'metro' and 'MeshLab'. The 'VCGLIB' source is pulled from trunk <https://github.com/cnr-isti-vclab/vcglib> and patched to work with options determined by the configure script as well as to work with the header files included by 'RcppEigen'.
|
2024-01-16 |
r-rtop
|
public |
Data with irregular spatial support, such as runoff related data or data from administrative units, can with 'rtop' be interpolated to locations without observations with the top-kriging method. A description of the package is given by Skøien et al (2014) <doi:10.1016/j.cageo.2014.02.009>.
|
2024-01-16 |
r-runuran
|
public |
Interface to the 'UNU.RAN' library for Universal Non-Uniform RANdom variate generators. Thus it allows to build non-uniform random number generators from quite arbitrary distributions. In particular, it provides an algorithm for fast numerical inversion for distribution with given density function. In addition, the package contains densities, distribution functions and quantiles from a couple of distributions.
|
2024-01-16 |
r-ruimtehol
|
public |
Wraps the 'StarSpace' library <https://github.com/facebookresearch/StarSpace> allowing users to calculate word, sentence, article, document, webpage, link and entity 'embeddings'. By using the 'embeddings', you can perform text based multi-label classification, find similarities between texts and categories, do collaborative-filtering based recommendation as well as content-based recommendation, find out relations between entities, calculate graph 'embeddings' as well as perform semi-supervised learning and multi-task learning on plain text. The techniques are explained in detail in the paper: 'StarSpace: Embed All The Things!' by Wu et al. (2017), available at <arXiv:1709.03856>.
|
2024-01-16 |
r-runner
|
public |
Lightweight library for rolling windows operations. Package enables full control over the window length, window lag and a time indices. With a runner one can apply any R function on a rolling windows. The package eases work with equally and unequally spaced time series.
|
2024-01-16 |
r-rtsne
|
public |
An R wrapper around the fast T-distributed Stochastic Neighbor Embedding implementation by Van der Maaten (see <https://github.com/lvdmaaten/bhtsne/> for more information on the original implementation).
|
2024-01-16 |
r-rucrdtw
|
public |
R bindings for functions from the UCR Suite by Rakthanmanon et al. (2012) <DOI:10.1145/2339530.2339576>, which enables ultrafast subsequence search for a best match under Dynamic Time Warping and Euclidean Distance.
|
2024-01-16 |
r-rttf2pt1
|
public |
Contains the program 'ttf2pt1', for use with the 'extrafont' package. This product includes software developed by the 'TTF2PT1' Project and its contributors.
|
2024-01-16 |
r-rtexttools
|
public |
A machine learning package for automatic text classification that makes it simple for novice users to get started with machine learning, while allowing experienced users to easily experiment with different settings and algorithm combinations. The package includes eight algorithms for ensemble classification (svm, slda, boosting, bagging, random forests, glmnet, decision trees, neural networks), comprehensive analytics, and thorough documentation.
|
2024-01-16 |
r-rtriangle
|
public |
This is a port of Jonathan Shewchuk's Triangle library to R. From his description: "Triangle generates exact Delaunay triangulations, constrained Delaunay triangulations, conforming Delaunay triangulations, Voronoi diagrams, and high-quality triangular meshes. The latter can be generated with no small or large angles, and are thus suitable for finite element analysis."
|
2024-01-16 |
r-rtkore
|
public |
'STK++' <http://www.stkpp.org> is a collection of C++ classes for statistics, clustering, linear algebra, arrays (with an 'Eigen'-like API), regression, dimension reduction, etc. The integration of the library to 'R' is using 'Rcpp'. The 'rtkore' package includes the header files from the 'STK++' core library. All files contain only template classes and/or inline functions. 'STK++' is licensed under the GNU LGPL version 2 or later. 'rtkore' (the 'stkpp' integration into 'R') is licensed under the GNU GPL version 2 or later. See file LICENSE.note for details.
|
2024-01-16 |
r-rtdists
|
public |
Provides response time distributions (density/PDF, distribution function/CDF, quantile function, and random generation): (a) Ratcliff diffusion model (Ratcliff & McKoon, 2008, <doi:10.1162/neco.2008.12-06-420>) based on C code by Andreas and Jochen Voss and (b) linear ballistic accumulator (LBA; Brown & Heathcote, 2008, <doi:10.1016/j.cogpsych.2007.12.002>) with different distributions underlying the drift rate.
|
2024-01-16 |
r-rstpm2
|
public |
R implementation of generalized survival models (GSMs), smooth accelerated failure time (AFT) models and Markov multi-state models. For the GSMs, g(S(t|x))=eta(t,x) for a link function g, survival S at time t with covariates x and a linear predictor eta(t,x). The main assumption is that the time effect(s) are smooth <doi:10.1177/0962280216664760>. For fully parametric models with natural splines, this re-implements Stata's 'stpm2' function, which are flexible parametric survival models developed by Royston and colleagues. We have extended the parametric models to include any smooth parametric smoothers for time. We have also extended the model to include any smooth penalized smoothers from the 'mgcv' package, using penalized likelihood. These models include left truncation, right censoring, interval censoring, gamma frailties and normal random effects <doi:10.1002/sim.7451>, and copulas. For the smooth AFTs, S(t|x) = S_0(t*eta(t,x)), where the baseline survival function S_0(t)=exp(-exp(eta_0(t))) is modelled for natural splines for eta_0, and the time-dependent cumulative acceleration factor eta(t,x)=\int_0^t exp(eta_1(u,x)) du for log acceleration factor eta_1(u,x). The Markov multi-state models allow for a range of models with smooth transitions to predict transition probabilities, length of stay, utilities and costs, with differences, ratios and standardisation.
|
2024-01-16 |
r-rtk
|
public |
Rarefy data, calculate diversity and plot the results.
|
2024-01-16 |
r-rstanarm
|
public |
Estimates previously compiled regression models using the 'rstan' package, which provides the R interface to the Stan C++ library for Bayesian estimation. Users specify models via the customary R syntax with a formula and data.frame plus some additional arguments for priors.
|
2024-01-16 |
r-rssa
|
public |
Methods and tools for Singular Spectrum Analysis including decomposition, forecasting and gap-filling for univariate and multivariate time series. General description of the methods with many examples can be found in the book Golyandina (2018, <doi:10.1007/978-3-662-57380-8>). See 'citation("Rssa")' for details.
|
2024-01-16 |
r-rsyslog
|
public |
Functions to write messages to the 'syslog' system logger API, available on all 'POSIX'-compatible operating systems. Features include tagging messages with a priority level and application type, as well as masking (hiding) messages below a given priority level.
|
2024-01-16 |
r-rstream
|
public |
Unified object oriented interface for multiple independent streams of random numbers from different sources.
|
2024-01-16 |
r-rspm
|
public |
Enables binary package installations on Linux distributions. Provides access to 'RStudio' public repositories at <https://packagemanager.rstudio.com>, and transparent management of system requirements without administrative privileges. Currently supported distributions are 'CentOS' / 'RHEL' 7-9, and several 'RHEL' derivatives ('Rocky Linux', 'AlmaLinux', 'Oracle Linux', and 'Amazon Linux' 2), 'openSUSE' / 'SLES' 15.3-4, and 'Ubuntu' 18.04, 20.04 and 22.04.
|
2024-01-16 |
r-rstiefel
|
public |
Simulation of random orthonormal matrices from linear and quadratic exponential family distributions on the Stiefel manifold. The most general type of distribution covered is the matrix-variate Bingham-von Mises-Fisher distribution. Most of the simulation methods are presented in Hoff(2009) "Simulation of the Matrix Bingham-von Mises-Fisher Distribution, With Applications to Multivariate and Relational Data" <doi:10.1198/jcgs.2009.07177>. The package also includes functions for optimization on the Stiefel manifold based on algorithms described in Wen and Yin (2013) "A feasible method for optimization with orthogonality constraints" <doi:10.1007/s10107-012-0584-1>.
|
2024-01-16 |
r-rstan
|
public |
User-facing R functions are provided to parse, compile, test, estimate, and analyze Stan models by accessing the header-only Stan library provided by the 'StanHeaders' package. The Stan project develops a probabilistic programming language that implements full Bayesian statistical inference via Markov Chain Monte Carlo, rough Bayesian inference via 'variational' approximation, and (optionally penalized) maximum likelihood estimation via optimization. In all three cases, automatic differentiation is used to quickly and accurately evaluate gradients without burdening the user with the need to derive the partial derivatives.
|
2024-01-16 |
r-rsomoclu
|
public |
Somoclu is a massively parallel implementation of self-organizing maps. It exploits multicore CPUs and it can be accelerated by CUDA. The topology of the map can be planar or toroid and the grid of neurons can be rectangular or hexagonal . Details refer to (Peter Wittek, et al (2017)) <doi:10.18637/jss.v078.i09>.
|
2024-01-16 |
r-rrapply
|
public |
The minimal 'rrapply'-package contains a single function rrapply(), providing an extended implementation of 'R'-base rapply() by allowing to recursively apply a function to elements of a nested list based on a general condition function and including the possibility to prune or aggregate nested list elements from the result. In addition, special arguments can be supplied to access the name, location, parents and siblings in the nested list of the element under evaluation. The rrapply() function builds upon rapply()'s native 'C' implementation and requires no other package dependencies.
|
2024-01-16 |
r-rsqlite
|
None |
Embeds the SQLite database engine in R and provides an interface compliant with the DBI package. The source for the SQLite engine and for various extensions in a recent version is included. System libraries will never be consulted because this package relies on static linking for the plugins it includes; this also ensures a consistent experience across all installations.
|
2024-01-16 |
r-rsparse
|
public |
Implements many algorithms for statistical learning on sparse matrices - matrix factorizations, matrix completion, elastic net regressions, factorization machines. Also 'rsparse' enhances 'Matrix' package by providing methods for multithreaded <sparse, dense> matrix products and native slicing of the sparse matrices in Compressed Sparse Row (CSR) format. List of the algorithms for regression problems: 1) Elastic Net regression via Follow The Proximally-Regularized Leader (FTRL) Stochastic Gradient Descent (SGD), as per McMahan et al(, <doi:10.1145/2487575.2488200>) 2) Factorization Machines via SGD, as per Rendle (2010, <doi:10.1109/ICDM.2010.127>) List of algorithms for matrix factorization and matrix completion: 1) Weighted Regularized Matrix Factorization (WRMF) via Alternating Least Squares (ALS) - paper by Hu, Koren, Volinsky (2008, <doi:10.1109/ICDM.2008.22>) 2) Maximum-Margin Matrix Factorization via ALS, paper by Rennie, Srebro (2005, <doi:10.1145/1102351.1102441>) 3) Fast Truncated Singular Value Decomposition (SVD), Soft-Thresholded SVD, Soft-Impute matrix completion via ALS - paper by Hastie, Mazumder et al. (2014, <arXiv:1410.2596>) 4) Linear-Flow matrix factorization, from 'Practical linear models for large-scale one-class collaborative filtering' by Sedhain, Bui, Kawale et al (2016, ISBN:978-1-57735-770-4) 5) GlobalVectors (GloVe) matrix factorization via SGD, paper by Pennington, Socher, Manning (2014, <https://aclanthology.org/D14-1162/>) Package is reasonably fast and memory efficient - it allows to work with large datasets - millions of rows and millions of columns. This is particularly useful for practitioners working on recommender systems.
|
2024-01-16 |
r-rspectra
|
public |
R interface to the 'Spectra' library <https://spectralib.org/> for large-scale eigenvalue and SVD problems. It is typically used to compute a few eigenvalues/vectors of an n by n matrix, e.g., the k largest eigenvalues, which is usually more efficient than eigen() if k << n. This package provides the 'eigs()' function that does the similar job as in 'Matlab', 'Octave', 'Python SciPy' and 'Julia'. It also provides the 'svds()' function to calculate the largest k singular values and corresponding singular vectors of a real matrix. The matrix to be computed on can be dense, sparse, or in the form of an operator defined by the user.
|
2024-01-16 |