r-subtite
|
public |
Chooses subgroup specific optimal doses in a phase I dose finding clinical trial allowing for subgroup combination and simulates clinical trials under the subgroup specific time to event continual reassessment method. Chapple, A.G., Thall, P.F. (2018) <doi:10.1002/pst.1891>.
|
2024-01-16 |
r-subrank
|
public |
Estimation of copula using ranks and subsampling. The main feature of this method is that simulation studies show a low sensitivity to dimension, on realistic cases.
|
2024-01-16 |
r-subplex
|
public |
The subplex algorithm for unconstrained optimization, developed by Tom Rowan <http://www.netlib.org/opt/subplex.tgz>.
|
2024-01-16 |
r-strucchange
|
public |
Testing, monitoring and dating structural changes in (linear) regression models. strucchange features tests/methods from the generalized fluctuation test framework as well as from the F test (Chow test) framework. This includes methods to fit, plot and test fluctuation processes (e.g., CUSUM, MOSUM, recursive/moving estimates) and F statistics, respectively. It is possible to monitor incoming data online using fluctuation processes. Finally, the breakpoints in regression models with structural changes can be estimated together with confidence intervals. Emphasis is always given to methods for visualizing the data.
|
2024-01-16 |
r-strex
|
public |
There are some things that I wish were easier with the 'stringr' or 'stringi' packages. The foremost of these is the extraction of numbers from strings. 'stringr' and 'stringi' make you figure out the regular expression for yourself; 'strex' takes care of this for you. There are many other handy functionalities in 'strex'. Contributions to this package are encouraged: it is intended as a miscellany of string manipulation functions that cannot be found in 'stringi' or 'stringr'.
|
2024-01-16 |
r-striprtf
|
public |
Extracts plain text from RTF (Rich Text Format) file.
|
2024-01-16 |
r-stringi
|
None |
A collection of character string/text/natural language processing tools for pattern searching (e.g., with 'Java'-like regular expressions or the 'Unicode' collation algorithm), random string generation, case mapping, string transliteration, concatenation, sorting, padding, wrapping, Unicode normalisation, date-time formatting and parsing, and many more. They are fast, consistent, convenient, and - thanks to 'ICU' (International Components for Unicode) - portable across all locales and platforms. Documentation about 'stringi' is provided via its website at <https://stringi.gagolewski.com/> and the paper by Gagolewski (2022, <doi:10.18637/jss.v103.i02>).
|
2024-01-16 |
r-strawr
|
public |
API for fast data extraction for .hic files that provides programmatic access to the matrices. It doesn't store the pointer data for all the matrices, only the one queried, and currently we are only supporting matrices (not vectors).
|
2024-01-16 |
r-stratification
|
public |
Univariate stratification of survey populations with a generalization of the Lavallee-Hidiroglou method of stratum construction. The generalized method takes into account a discrepancy between the stratification variable and the survey variable. The determination of the optimal boundaries also incorporate, if desired, an anticipated non-response, a take-all stratum for large units, a take-none stratum for small units, and a certainty stratum to ensure that some specific units are in the sample. The well known cumulative root frequency rule of Dalenius and Hodges and the geometric rule of Gunning and Horgan are also implemented.
|
2024-01-16 |
r-stringdist
|
None |
Implements an approximate string matching version of R's native 'match' function. Also offers fuzzy text search based on various string distance measures. Can calculate various string distances based on edits (Damerau-Levenshtein, Hamming, Levenshtein, optimal sting alignment), qgrams (q- gram, cosine, jaccard distance) or heuristic metrics (Jaro, Jaro-Winkler). An implementation of soundex is provided as well. Distances can be computed between character vectors while taking proper care of encoding or between integer vectors representing generic sequences. This package is built for speed and runs in parallel by using 'openMP'. An API for C or C++ is exposed as well. Reference: MPJ van der Loo (2014) <doi:10.32614/RJ-2014-011>.
|
2024-01-16 |
r-strider
|
public |
The strided iterator adapts multidimensional buffers to work with the C++ standard library and range-based for-loops. Given a pointer or iterator into a multidimensional data buffer, one can generate an iterator range using make_strided to construct strided versions of the standard library's begin and end. For constructing range-based for-loops, a strided_range class is provided. These help authors to avoid integer-based indexing, which in some cases can impede algorithm performance and introduce indexing errors. This library exists primarily to expose the header file to other R projects.
|
2024-01-16 |
r-stm
|
public |
The Structural Topic Model (STM) allows researchers to estimate topic models with document-level covariates. The package also includes tools for model selection, visualization, and estimation of topic-covariate regressions. Methods developed in Roberts et. al. (2014) <doi:10.1111/ajps.12103> and Roberts et. al. (2016) <doi:10.1080/01621459.2016.1141684>. Vignette is Roberts et. al. (2019) <doi:10.18637/jss.v091.i02>.
|
2024-01-16 |
r-streambugs
|
public |
Numerically solve and plot solutions of a parametric ordinary differential equations model of growth, death, and respiration of macroinvertebrate and algae taxa dependent on pre-defined environmental factors. The model (version 1.0) is introduced in Schuwirth, N. and Reichert, P., (2013) <DOI:10.1890/12-0591.1>. This package includes model extensions and the core functions introduced and used in Schuwirth, N. et al. (2016) <DOI:10.1111/1365-2435.12605>, Kattwinkel, M. et al. (2016) <DOI:10.1021/acs.est.5b04068>, Mondy, C. P., and Schuwirth, N. (2017) <DOI:10.1002/eap.1530>, and Paillex, A. et al. (2017) <DOI:10.1111/fwb.12927>.
|
2024-01-16 |
r-stratest
|
public |
Variants of strategy estimation (Dal Bo & Frechette, 2011, <doi:10.1257/aer.101.1.411>), including the model with parameters for the choice probabilities of the strategies (Breitmoser, 2015, <doi:10.1257/aer.20130675>), and the model with individual level covariates for the selection of strategies by individuals (Dvorak & Fehrler, 2018, <doi:10.2139/ssrn.2986445>).
|
2024-01-16 |
r-stlplus
|
public |
Decompose a time series into seasonal, trend, and remainder components using an implementation of Seasonal Decomposition of Time Series by Loess (STL) that provides several enhancements over the STL method in the stats package. These enhancements include handling missing values, providing higher order (quadratic) loess smoothing with automated parameter choices, frequency component smoothing beyond the seasonal and trend components, and some basic plot methods for diagnostics.
|
2024-01-16 |
r-strainranking
|
public |
Regression-based ranking of pathogen strains with respect to their contributions to natural epidemics, using demographic and genetic data sampled in the curse of the epidemics. This package also includes the GMCPIC test.
|
2024-01-16 |
r-stosim
|
public |
A toolkit for Reliability Availability and Maintainability (RAM) modeling of industrial process systems.
|
2024-01-16 |
r-storr
|
public |
Creates and manages simple key-value stores. These can use a variety of approaches for storing the data. This package implements the base methods and support for file system, in-memory and DBI-based database stores.
|
2024-01-16 |
r-stockr
|
public |
Provides a mixture model for clustering individuals (or sampling groups) into stocks based on their genetic profile. Here, sampling groups are individuals that are sure to come from the same stock (e.g. breeding adults or larvae). The mixture (log-)likelihood is maximised using the EM-algorithm after finding good starting values via a K-means clustering of the genetic data. Details can be found in: Foster, S. D.; Feutry, P.; Grewe, P. M.; Berry, O.; Hui, F. K. C. & Davies (2020) <doi:10.1111/1755-0998.12920>.
|
2024-01-16 |
r-stochvol
|
public |
Efficient algorithms for fully Bayesian estimation of stochastic volatility (SV) models with and without asymmetry (leverage) via Markov chain Monte Carlo (MCMC) methods. Methodological details are given in Kastner and Frühwirth-Schnatter (2014) <doi:10.1016/j.csda.2013.01.002> and Hosszejni and Kastner (2019) <doi:10.1007/978-3-030-30611-3_8>; the most common use cases are described in Hosszejni and Kastner (2021) <doi:10.18637/jss.v100.i12> and Kastner (2016) <doi:10.18637/jss.v069.i05> and the package examples.
|
2024-01-16 |
r-statip
|
public |
A collection of miscellaneous statistical functions for probability distributions: 'dbern()', 'pbern()', 'qbern()', 'rbern()' for the Bernoulli distribution, and 'distr2name()', 'name2distr()' for distribution names; probability density estimation: 'densityfun()'; most frequent value estimation: 'mfv()', 'mfv1()'; other statistical measures of location: 'cv()' (coefficient of variation), 'midhinge()', 'midrange()', 'trimean()'; construction of histograms: 'histo()', 'find_breaks()'; calculation of the Hellinger distance: 'hellinger()'; use of classical kernels: 'kernelfun()', 'kernel_properties()'; univariate piecewise-constant regression: 'picor()'.
|
2024-01-16 |
r-stochqn
|
public |
Implementations of stochastic, limited-memory quasi-Newton optimizers, similar in spirit to the LBFGS (Limited-memory Broyden-Fletcher-Goldfarb-Shanno) algorithm, for smooth stochastic optimization. Implements the following methods: oLBFGS (online LBFGS) (Schraudolph, N.N., Yu, J. and Guenter, S., 2007 <http://proceedings.mlr.press/v2/schraudolph07a.html>), SQN (stochastic quasi-Newton) (Byrd, R.H., Hansen, S.L., Nocedal, J. and Singer, Y., 2016 <arXiv:1401.7020>), adaQN (adaptive quasi-Newton) (Keskar, N.S., Berahas, A.S., 2016, <arXiv:1511.01169>). Provides functions for easily creating R objects with partial_fit/predict methods from some given objective/gradient/predict functions. Includes an example stochastic logistic regression using these optimizers. Provides header files and registered C routines for using it directly from C/C++.
|
2024-01-16 |
r-staggered
|
public |
Efficiently estimates treatment effects in settings with randomized staggered rollouts, using tools proposed by Roth and Sant'Anna (2021) <arXiv:2102.01291>.
|
2024-01-16 |
r-stima
|
public |
Regression trunk model estimation proposed by Dusseldorp and Meulman (2004) <doi:10.1007/bf02295641> and Dusseldorp, Conversano, Van Os (2010) <doi:10.1198/jcgs.2010.06089>, integrating a regression tree and a multiple regression model.
|
2024-01-16 |
r-stepwisetest
|
public |
Collection of stepwise procedures to conduct multiple hypotheses testing. The details of the stepwise algorithm can be found in Romano and Wolf (2007) <DOI:10.1214/009053606000001622> and Hsu, Kuan, and Yen (2014) <DOI:10.1093/jjfinec/nbu014>.
|
2024-01-16 |
r-stepsignalmargilike
|
public |
Provides function to estimate multiple change points using marginal likelihood method. See the Manual file in data folder for a detailed description of all functions, and a walk through tutorial. For more information of the method, please see Du, Kao and Kou (2016) <doi:10.1080/01621459.2015.1006365>.
|
2024-01-16 |
r-stepplr
|
public |
L2 penalized logistic regression for both continuous and discrete predictors, with forward stagewise/forward stepwise variable selection procedure.
|
2024-01-16 |
r-steepness
|
public |
The steepness package computes steepness as a property of dominance hierarchies. Steepness is defined as the absolute slope of the straight line fitted to the normalized David's scores. The normalized David's scores can be obtained on the basis of dyadic dominance indices corrected for chance or by means of proportions of wins. Given an observed sociomatrix, it computes hierarchy's steepness and estimates statistical significance by means of a randomization test.
|
2024-01-16 |
r-steadyica
|
public |
Functions related to multivariate measures of independence and ICA: -estimate independent components by minimizing distance covariance; -conduct a test of mutual independence based on distance covariance; -estimate independent components via infomax (a popular method but generally performs poorer than mdcovica, ProDenICA, and/or fastICA, but is useful for comparisons); -order indepedent components by skewness; -match independent components from multiple estimates; -other functions useful in ICA.
|
2024-01-16 |
r-stdvectors
|
public |
Allows the creation and manipulation of C++ std::vector's in R.
|
2024-01-16 |
r-statnet.common
|
public |
Non-statistical utilities used by the software developed by the Statnet Project. They may also be of use to others.
|
2024-01-16 |
r-stan4bart
|
public |
Fits semiparametric linear and multilevel models with non-parametric additive Bayesian additive regression tree (BART; Chipman, George, and McCulloch (2010) <doi:10.1214/09-AOAS285>) components and Stan (Stan Development Team (2021) <https://mc-stan.org/>) sampled parametric ones. Multilevel models can be expressed using 'lme4' syntax (Bates, Maechler, Bolker, and Walker (2015) <doi:10.18637/jss.v067.i01>).
|
2024-01-16 |
r-statmod
|
public |
A collection of algorithms and functions to aid statistical modeling. Includes limiting dilution analysis (aka ELDA), growth curve comparisons, mixed linear models, heteroscedastic regression, inverse-Gaussian probability calculations, Gauss quadrature and a secure convergence algorithm for nonlinear models. Also includes advanced generalized linear model functions including Tweedie and Digamma distributional families, secure convergence and exact distributional calculations for unit deviances.
|
2024-01-16 |
r-stable
|
public |
Density, distribution, quantile and hazard functions of a stable variate; generalized regression models for the parameters of a stable distribution. See the README for how to make equivalent calls to those of 'stabledist' (i.e., Nolan's 0-parameterization and 1-parameterization as detailed in Nolan (2020)). See github for Lambert and Lindsey 1999 JRSS-C journal article, which details the parameterization of the Buck (1995) stable. See the Details section of the `?dstable` help file for context and references.
|
2024-01-16 |
r-startdesign
|
public |
The package is used for calibrating the design parameters for single-to-double arm transition design proposed by Shi and Yin (2017). The calibration is performed via numerical enumeration to find the optimal design that satisfies the constraints on the type I and II error rates.
|
2024-01-16 |
r-stanheaders
|
public |
The C++ header files of the Stan project are provided by this package, but it contains little R code or documentation. The main reference is the vignette. There is a shared object containing part of the 'CVODES' library, but its functionality is not accessible from R. 'StanHeaders' is primarily useful for developers who want to utilize the 'LinkingTo' directive of their package's DESCRIPTION file to build on the Stan library without incurring unnecessary dependencies. The Stan project develops a probabilistic programming language that implements full or approximate Bayesian statistical inference via Markov Chain Monte Carlo or 'variational' methods and implements (optionally penalized) maximum likelihood estimation via optimization. The Stan library includes an advanced automatic differentiation scheme, 'templated' statistical and linear algebra functions that can handle the automatically 'differentiable' scalar types (and doubles, 'ints', etc.), and a parser for the Stan language. The 'rstan' package provides user-facing R functions to parse, compile, test, estimate, and analyze Stan models.
|
2024-01-16 |
r-stabreg
|
public |
Efficient regression for heavy-tailed and skewed data following a stable distribution. Generalized regression where the skewness and tail parameter of residuals are dependent on regressors is also available. Includes fast calculation of stable densities. Calculation of densities is based on efficient numerical methods from Ament and O'Neil (2017) <doi:10.1007/s11222-017-9725-y>. Parts of the code have been ported to C from Ament's 'Matlab' code available at <https://gitlab.com/s_ament/qastable>.
|
2024-01-16 |
r-spt
|
public |
A collection of algorithms related to Sierpinski pedal triangle (SPT).
|
2024-01-16 |
r-ssosvm
|
public |
Soft-margin support vector machines (SVMs) are a common class of classification models. The training of SVMs usually requires that the data be available all at once in a single batch, however the Stochastic majorization-minimization (SMM) algorithm framework allows for the training of SVMs on streamed data instead Nguyen, Jones & McLachlan(2018)<doi:10.1007/s42081-018-0001-y>. This package utilizes the SMM framework to provide functions for training SVMs with hinge loss, squared-hinge loss, and logistic loss.
|
2024-01-16 |
r-sslasso
|
public |
Efficient coordinate ascent algorithm for fitting regularization paths for linear models penalized by Spike-and-Slab LASSO of Rockova and George (2018) <doi:10.1080/01621459.2016.1260469>.
|
2024-01-16 |
r-ssgraph
|
public |
Bayesian estimation for undirected graphical models using spike-and-slab priors. The package handles continuous, discrete, and mixed data.
|
2024-01-16 |
r-srm
|
public |
Provides functionality for structural equation modeling for the social relations model (Kenny & La Voie, 1984; <doi:10.1016/S0065-2601(08)60144-6>; Warner, Kenny, & Soto, 1979, <doi:10.1037/0022-3514.37.10.1742>). Maximum likelihood estimation (Gill & Swartz, 2001, <doi:10.2307/3316080>; Nestler, 2018, <doi:10.3102/1076998617741106>) and least squares estimation is supported (Bond & Malloy, 2018, <doi:10.1016/B978-0-12-811967-9.00014-X>).
|
2024-01-16 |
r-sprintr
|
public |
An implementation of a computationally efficient method to fit large-scale interaction models based on the reluctant interaction selection principle. The method and its properties are described in greater depth in Yu, G., Bien, J., and Tibshirani, R.J. (2019) "Reluctant interaction modeling", which is available at <arXiv:1907.08414>.
|
2024-01-16 |
r-spmc
|
public |
A set of functions is provided for 1) the stratum lengths analysis along a chosen direction, 2) fast estimation of continuous lag spatial Markov chains model parameters and probability computing (also for large data sets), 3) transition probability maps and transiograms drawing, 4) simulation methods for categorical random fields. More details on the methodology are discussed in Sartore (2013) <doi:10.32614/RJ-2013-022> and Sartore et al. (2016) <doi:10.1016/j.cageo.2016.06.001>.
|
2024-01-16 |
r-spnn
|
public |
Scale invariant version of the original PNN proposed by Specht (1990) <doi:10.1016/0893-6080(90)90049-q> with the added functionality of allowing for smoothing along multiple dimensions while accounting for covariances within the data set. It is written in the R statistical programming language. Given a data set with categorical variables, we use this algorithm to estimate the probabilities of a new observation vector belonging to a specific category. This type of neural network provides the benefits of fast training time relative to backpropagation and statistical generalization with only a small set of known observations.
|
2024-01-16 |
r-splus2r
|
public |
Currently there are many functions in S-PLUS that are missing in R. To facilitate the conversion of S-PLUS packages to R packages, this package provides some missing S-PLUS functionality in R.
|
2024-01-16 |
r-spdep
|
public |
A collection of functions to create spatial weights matrix objects from polygon 'contiguities', from point patterns by distance and tessellations, for summarizing these objects, and for permitting their use in spatial data analysis, including regional aggregation by minimum spanning tree; a collection of tests for spatial 'autocorrelation', including global 'Morans I' and 'Gearys C' proposed by 'Cliff' and 'Ord' (1973, ISBN: 0850860369) and (1981, ISBN: 0850860814), 'Hubert/Mantel' general cross product statistic, Empirical Bayes estimates and 'Assunção/Reis' (1999) <doi:10.1002/(SICI)1097-0258(19990830)18:16%3C2147::AID-SIM179%3E3.0.CO;2-I> Index, 'Getis/Ord' G ('Getis' and 'Ord' 1992) <doi:10.1111/j.1538-4632.1992.tb00261.x> and multicoloured join count statistics, 'APLE' ('Li 'et al.' ) <doi:10.1111/j.1538-4632.2007.00708.x>, local 'Moran's I', 'Gearys C' ('Anselin' 1995) <doi:10.1111/j.1538-4632.1995.tb00338.x> and 'Getis/Ord' G ('Ord' and 'Getis' 1995) <doi:10.1111/j.1538-4632.1995.tb00912.x>, 'saddlepoint' approximations ('Tiefelsdorf' 2002) <doi:10.1111/j.1538-4632.2002.tb01084.x> and exact tests for global and local 'Moran's I' ('Bivand et al.' 2009) <doi:10.1016/j.csda.2008.07.021> and 'LOSH' local indicators of spatial heteroscedasticity ('Ord' and 'Getis') <doi:10.1007/s00168-011-0492-y>. The implementation of most of the measures is described in 'Bivand' and 'Wong' (2018) <doi:10.1007/s11749-018-0599-x>, with further extensions in 'Bivand' (2022) <doi:10.1111/gean.12319>. From 'spdep' and 'spatialreg' versions >= 1.2-1, the model fitting functions previously present in this package are defunct in 'spdep' and may be found in 'spatialreg'.
|
2024-01-16 |
r-splitreg
|
public |
Functions for computing split regularized estimators defined in Christidis, Lakshmanan, Smucler and Zamar (2019) <arXiv:1712.03561>. The approach fits linear regression models that split the set of covariates into groups. The optimal split of the variables into groups and the regularized estimation of the regression coefficients are performed by minimizing an objective function that encourages sparsity within each group and diversity among them. The estimated coefficients are then pooled together to form the final fit.
|
2024-01-16 |
r-splitsoftening
|
public |
Allows to produce and use classification trees with soft (probability) splits, as described in: Dvořák, J. (2019), <doi:10.1007/s00180-019-00867-1>.
|
2024-01-16 |
r-splines2
|
public |
Constructs basis functions of B-splines, M-splines, I-splines, convex splines (C-splines), periodic splines, natural cubic splines, generalized Bernstein polynomials, their derivatives, and integrals (except C-splines) by closed-form recursive formulas. It also contains a C++ head-only library integrated with Rcpp. See Wang and Yan (2021) <doi:10.6339/21-JDS1020> for details.
|
2024-01-16 |