About Anaconda Help Download Anaconda

r / packages

Package Name Access Summary Updated
r-diagram public Visualises simple graphs (networks) based on a transition matrix, utilities to plot flow diagrams, visualising webs, electrical networks, etc. Support for the book "A practical guide to ecological modelling - using R as a simulation platform" by Karline Soetaert and Peter M.J. Herman (2009), Springer. and the book "Solving Differential Equations in R" by Karline Soetaert, Jeff Cash and Francesca Mazzia (2012), Springer. Includes demo(flowchart), demo(plotmat), demo(plotweb). 2025-03-25
r-dharma public The 'DHARMa' package uses a simulation-based approach to create readily interpretable scaled (quantile) residuals for fitted (generalized) linear mixed models. Currently supported are linear and generalized linear (mixed) models from 'lme4' (classes 'lmerMod', 'glmerMod'), 'glmmTMB' 'GLMMadaptive' and 'spaMM', generalized additive models ('gam' from 'mgcv'), 'glm' (including 'negbin' from 'MASS', but excluding quasi-distributions) and 'lm' model classes. Moreover, externally created simulations, e.g. posterior predictive simulations from Bayesian software such as 'JAGS', 'STAN', or 'BUGS' can be processed as well. The resulting residuals are standardized to values between 0 and 1 and can be interpreted as intuitively as residuals from a linear regression. The package also provides a number of plot and test functions for typical model misspecification problems, such as over/underdispersion, zero-inflation, and residual spatial and temporal autocorrelation. 2025-03-25
r-dfa.cancor public Produces SPSS- and SAS-like output for linear discriminant function analysis and canonical correlation analysis. The methods are described in Manly & Alberto (2017, ISBN:9781498728966), Rencher (2002, ISBN:0-471-41889-7), and Tabachnik & Fidell (2019, ISBN:9780134790541). 2025-03-25
r-detectseparation public Provides pre-fit and post-fit methods for detecting separation and infinite maximum likelihood estimates in generalized linear models with categorical responses. The pre-fit methods apply on binomial-response generalized liner models such as logit, probit and cloglog regression, and can be directly supplied as fitting methods to the glm() function. They solve the linear programming problems for the detection of separation developed in Konis (2007, <https://ora.ox.ac.uk/objects/uuid:8f9ee0d0-d78e-4101-9ab4-f9cbceed2a2a>) using 'ROI' <https://cran.r-project.org/package=ROI> or 'lpSolveAPI' <https://cran.r-project.org/package=lpSolveAPI>. The post-fit methods apply to models with categorical responses, including binomial-response generalized linear models and multinomial-response models, such as baseline category logits and adjacent category logits models; for example, the models implemented in the 'brglm2' <https://cran.r-project.org/package=brglm2> package. The post-fit methods successively refit the model with increasing number of iteratively reweighted least squares iterations, and monitor the ratio of the estimated standard error for each parameter to what it has been in the first iteration. According to the results in Lesaffre & Albert (1989, <https://www.jstor.org/stable/2345845>), divergence of those ratios indicates data separation. 2025-03-25
r-details public Create a details HTML tag around R objects to place in a Markdown, 'Rmarkdown' and 'roxygen2' documentation. 2025-03-25
r-desplot public A function for plotting maps of agricultural field experiments that are laid out in grids. See Ryder (1981) <doi:10.1017/S0014479700011601>. 2025-03-25
r-descriptio public Description of statistical associations between two variables : measures of local and global association between variables (phi, Cramér V, correlations, eta-squared, Goodman and Kruskal tau, permutation tests, etc.), multiple graphical representations of the associations between two variables (using 'ggplot2') and weighted statistics. 2025-03-25
r-designmatch public Includes functions for the construction of matched samples that are balanced and representative by design. Among others, these functions can be used for matching in observational studies with treated and control units, with cases and controls, in related settings with instrumental variables, and in discontinuity designs. Also, they can be used for the design of randomized experiments, for example, for matching before randomization. By default, 'designmatch' uses the 'highs' optimization solver, but its performance is greatly enhanced by the 'Gurobi' optimization solver and its associated R interface. For their installation, please follow the instructions at <https://www.gurobi.com/documentation/quickstart.html> and <https://www.gurobi.com/documentation/7.0/refman/r_api_overview.html>. We have also included directions in the gurobi_installation file in the inst folder. 2025-03-25
r-descriptr public Generate descriptive statistics such as measures of location, dispersion, frequency tables, cross tables, group summaries and multiple one/two way tables. 2025-03-25
r-dendextend public Offers a set of functions for extending 'dendrogram' objects in R, letting you visualize and compare trees of 'hierarchical clusterings'. You can (1) Adjust a tree's graphical parameters - the color, size, type, etc of its branches, nodes and labels. (2) Visually and statistically compare different 'dendrograms' to one another. 2025-03-25
r-demography public Functions for demographic analysis including lifetable calculations; Lee-Carter modelling; functional data analysis of mortality rates, fertility rates, net migration numbers; and stochastic population forecasting. 2025-03-25
r-deeplr public A wrapper for the 'DeepL' Pro API <https://www.deepl.com/docs-api>, a web service for translating texts between different languages. A DeepL API developer account is required to use the service (see <https://www.deepl.com/pro#developer). 2025-03-25
r-deducer public An intuitive, cross-platform graphical data analysis system. It uses menus and dialogs to guide the user efficiently through the data manipulation and analysis process, and has an excel like spreadsheet for easy data frame visualization and editing. Deducer works best when used with the Java based R GUI JGR, but the dialogs can be called from the command line. Dialogs have also been integrated into the Windows Rgui. 2025-03-25
r-declaredesign public Researchers can characterize and learn about the properties of research designs before implementation using `DeclareDesign`. Ex ante declaration and diagnosis of designs can help researchers clarify the strengths and limitations of their designs and to improve their properties, and can help readers evaluate a research strategy prior to implementation and without access to results. It can also make it easier for designs to be shared, replicated, and critiqued. 2025-03-25
r-ddoutlier public Outlier detection in multidimensional domains. Implementation of notable distance and density-based outlier algorithms. Allows users to identify local outliers by comparing observations to their nearest neighbors, reverse nearest neighbors, shared neighbors or natural neighbors. For distance-based approaches, see Knorr, M., & Ng, R. T. (1997) <doi:10.1145/782010.782021>, Angiulli, F., & Pizzuti, C. (2002) <doi:10.1007/3-540-45681-3_2>, Hautamaki, V., & Ismo, K. (2004) <doi:10.1109/ICPR.2004.1334558> and Zhang, K., Hutter, M. & Jin, H. (2009) <doi:10.1007/978-3-642-01307-2_84>. For density-based approaches, see Tang, J., Chen, Z., Fu, A. W. C., & Cheung, D. W. (2002) <doi:10.1007/3-540-47887-6_53>, Jin, W., Tung, A. K. H., Han, J., & Wang, W. (2006) <doi:10.1007/11731139_68>, Schubert, E., Zimek, A. & Kriegel, H-P. (2014) <doi:10.1137/1.9781611973440.63>, Latecki, L., Lazarevic, A. & Prokrajac, D. (2007) <doi:10.1007/978-3-540-73499-4_6>, Papadimitriou, S., Gibbons, P. B., & Faloutsos, C. (2003) <doi:10.1109/ICDE.2003.1260802>, Breunig, M. M., Kriegel, H.-P., Ng, R. T., & Sander, J. (2000) <doi:10.1145/342009.335388>, Kriegel, H.-P., Kröger, P., Schubert, E., & Zimek, A. (2009) <doi:10.1145/1645953.1646195>, Zhu, Q., Feng, Ji. & Huang, J. (2016) <doi:10.1016/j.patrec.2016.05.007>, Huang, J., Zhu, Q., Yang, L. & Feng, J. (2015) <doi:10.1016/j.knosys.2015.10.014>, Tang, B. & Haibo, He. (2017) <doi:10.1016/j.neucom.2017.02.039> and Gao, J., Hu, W., Zhang, X. & Wu, Ou. (2011) <doi:10.1007/978-3-642-20847-8_23>. 2025-03-25
r-dear public Set of functions for Data Envelopment Analysis. It runs both classic and fuzzy DEA models. See: Banker, R.; Charnes, A.; Cooper, W.W. (1984). <doi:10.1287/mnsc.30.9.1078>, Charnes, A.; Cooper, W.W.; Rhodes, E. (1978). <doi:10.1016/0377-2217(78)90138-8> and Charnes, A.; Cooper, W.W.; Rhodes, E. (1981). <doi:10.1287/mnsc.27.6.668>. 2025-03-25
r-dcurves public Diagnostic and prognostic models are typically evaluated with measures of accuracy that do not address clinical consequences. Decision-analytic techniques allow assessment of clinical outcomes, but often require collection of additional information may be cumbersome to apply to models that yield a continuous result. Decision curve analysis is a method for evaluating and comparing prediction models that incorporates clinical consequences, requires only the data set on which the models are tested, and can be applied to models that have either continuous or dichotomous results. See the following references for details on the methods: Vickers (2006) <doi:10.1177/0272989X06295361>, Vickers (2008) <doi:10.1186/1472-6947-8-53>, and Pfeiffer (2020) <doi:10.1002/bimj.201800240>. 2025-03-25
r-dbplot public Leverages 'dplyr' to process the calculations of a plot inside a database. This package provides helper functions that abstract the work at three levels: outputs a 'ggplot', outputs the calculations, outputs the formula needed to calculate bins. 2025-03-25
r-dbitest public A helper that tests DBI back ends for conformity to the interface. 2025-03-25
r-daymetr public Programmatic interface to the 'Daymet' web services (<http://daymet.ornl.gov>). Allows for easy downloads of 'Daymet' climate data directly to your R workspace or your computer. Routines for both single pixel data downloads and gridded (netCDF) data are provided. 2025-03-25
r-daterangepicker public A Shiny Input for date-ranges, which pops up two calendars for selecting dates, times, or predefined ranges like "Last 30 Days". It wraps the JavaScript library 'daterangepicker' which is available at <https://www.daterangepicker.com>. 2025-03-25
r-datos public Provee una versión traducida de los siguientes conjuntos de datos: 'airlines', 'airports', 'AwardsManagers', 'babynames', 'Batting', 'credit_data', 'diamonds', 'faithful', 'fueleconomy', 'Fielding', 'flights', 'gapminder', 'gss_cat', 'iris', 'Managers', 'mpg', 'mtcars', 'atmos', 'palmerpenguins', 'People, 'Pitching', 'planes', 'presidential', 'table1', 'table2', 'table3', 'table4a', 'table4b', 'table5', 'vehicles', 'weather', 'who'. English: It provides a Spanish translated version of the datasets listed above. 2025-03-25
r-datasets.load public Graphical interface for loading datasets in RStudio from all installed (including unloaded) packages, also includes command line interfaces. 2025-03-25
r-datawizard public A lightweight package to assist in key steps involved in any data analysis workflow: (1) wrangling the raw data to get it in the needed form, (2) applying preprocessing steps and statistical transformations, and (3) compute statistical summaries of data properties and distributions. It is also the data wrangling backend for packages in 'easystats' ecosystem. References: Patil et al. (2022) <doi:10.21105/joss.04684>. 2025-03-25
r-dataset public The aim of the 'dataset' package is to make tidy datasets easier to release, exchange and reuse. It organizes and formats data frame 'R' objects into well-referenced, well-described, interoperable datasets into release and reuse ready form. A subjective interpretation of the W3C DataSet recommendation and the datacube model <https://www.w3.org/TR/vocab-data-cube/>, which is also used in the global Statistical Data and Metadata eXchange standards, the application of the connected Dublin Core <https://www.dublincore.org/specifications/dublin-core/dcmi-terms/> and DataCite <https://support.datacite.org/docs/datacite-metadata-schema-44/> standards preferred by European open science repositories to improve the findability, accessibility, interoperability and reusability of the datasets. 2025-03-25
r-dataretrieval public Collection of functions to help retrieve U.S. Geological Survey and U.S. Environmental Protection Agency water quality and hydrology data from web services. Data are discovered from National Water Information System <https://waterservices.usgs.gov/> and <https://waterdata.usgs.gov/nwis>. Water quality data are obtained from the Water Quality Portal <https://www.waterqualitydata.us/>. 2025-03-25
r-datapreparation public Do most of the painful data preparation for a data science project with a minimum amount of code; Take advantages of 'data.table' efficiency and use some algorithmic trick in order to perform data preparation in a time and RAM efficient way. 2025-03-25
r-datapasta public RStudio addins and R functions that make copy-pasting vectors and tables to text painless. 2025-03-25
r-datamods public 'Shiny' modules to import data into an application or 'addin' from various sources, and to manipulate them after that. 2025-03-25
r-datamaid public Data screening is an important first step of any statistical analysis. dataMaid auto generates a customizable data report with a thorough summary of the checks and the results that a human can use to identify possible errors. It provides an extendable suite of test for common potential errors in a dataset. 2025-03-25
r-dataeditr public An interactive editor built on 'rhandsontable' to allow the interactive viewing, entering, filtering and editing of data in R <https://dillonhammill.github.io/DataEditR/>. 2025-03-25
r-dataexplorer public Automated data exploration process for analytic tasks and predictive modeling, so that users could focus on understanding data and extracting insights. The package scans and analyzes each variable, and visualizes them with typical graphical techniques. Common data processing methods are also available to treat and format data. 2025-03-25
r-datacombine public Tools for combining and cleaning data sets, particularly with grouped and time series data. 2025-03-25
r-databaseconnector public An R 'DataBase Interface' ('DBI') compatible interface to various database platforms ('PostgreSQL', 'Oracle', 'Microsoft SQL Server', 'Amazon Redshift', 'Microsoft Parallel Database Warehouse', 'IBM Netezza', 'Apache Impala', 'Google BigQuery', 'Snowflake', 'Spark', and 'SQLite'). Also includes support for fetching data as 'Andromeda' objects. Uses either 'Java Database Connectivity' ('JDBC') or other 'DBI' drivers to connect to databases. 2025-03-25
r-data.validator public Validate dataset by columns and rows using convenient predicates inspired by 'assertr' package. Generate good looking HTML report or print console output to display in logs of your data processing pipeline. 2025-03-25
r-dashboardthemes public Allows manual creation of themes and logos to be used in applications created using the 'shinydashboard' package. Removes the need to change the underlying css code by wrapping it into a set of convenient R functions. 2025-03-25
r-dartr.data public Data package for 'dartR'. Provides data sets to run examples in 'dartR'. This was necessary due to the size limit imposed by 'CRAN'. The data in 'dartR.data' is needed to run the examples provided in the 'dartR' functions. All available data sets are either based on actual data (but reduced in size) and/or simulated data sets to allow the fast execution of examples and demonstration of the functions. 2025-03-25
r-dalextra public Provides wrapper of various machine learning models. In applied machine learning, there is a strong belief that we need to strike a balance between interpretability and accuracy. However, in field of the interpretable machine learning, there are more and more new ideas for explaining black-box models, that are implemented in 'R'. 'DALEXtra' creates 'DALEX' Biecek (2018) <arXiv:1806.08915> explainer for many type of models including those created using 'python' 'scikit-learn' and 'keras' libraries, and 'java' 'h2o' library. Important part of the package is Champion-Challenger analysis and innovative approach to model performance across subsets of test data presented in Funnel Plot. 2025-03-25
r-dalex public Any unverified black box model is the path to failure. Opaqueness leads to distrust. Distrust leads to ignoration. Ignoration leads to rejection. DALEX package xrays any model and helps to explore and explain its behaviour. Machine Learning (ML) models are widely used and have various applications in classification or regression. Models created with boosting, bagging, stacking or similar techniques are often used due to their high performance. But such black-box models usually lack direct interpretability. DALEX package contains various methods that help to understand the link between input variables and model output. Implemented methods help to explore the model on the level of a single instance as well as a level of the whole dataset. All model explainers are model agnostic and can be compared across different models. DALEX package is the cornerstone for 'DrWhy.AI' universe of packages for visual model exploration. Find more details in (Biecek 2018) <arXiv:1806.08915>. 2025-03-25
r-daewr public Contains Data frames and functions used in the book "Design and Analysis of Experiments with R", Lawson(2015) ISBN-13:978-1-4398-6813-3. 2025-03-25
r-dagitty public A port of the web-based software 'DAGitty', available at <http://dagitty.net>, for analyzing structural causal models (also known as directed acyclic graphs or DAGs). This package computes covariate adjustment sets for estimating causal effects, enumerates instrumental variables, derives testable implications (d-separation and vanishing tetrads), generates equivalent models, and includes a simple facility for data simulation. 2025-03-25
r-dae public The content falls into the following groupings: (i) Data, (ii) Factor manipulation functions, (iii) Design functions, (iv) ANOVA functions, (v) Matrix functions, (vi) Projector and canonical efficiency functions, and (vii) Miscellaneous functions. There is a vignette describing how to use the design functions for randomizing and assessing designs available as a vignette called 'DesignNotes'. The ANOVA functions facilitate the extraction of information when the 'Error' function has been used in the call to 'aov'. The package 'dae' can also be installed from <http://chris.brien.name/rpackages/>. 2025-03-25
r-d3tree public Create and customize interactive collapsible 'D3' trees using the 'D3' JavaScript library and the 'htmlwidgets' package. These trees can be used directly from the R console, from 'RStudio', in Shiny apps and R Markdown documents. When in Shiny the tree layout is observed by the server and can be used as a reactive filter of structured data. 2025-03-25
r-dabestr public Data Analysis using Bootstrap-Coupled ESTimation. Estimation statistics is a simple framework that avoids the pitfalls of significance testing. It uses familiar statistical concepts: means, mean differences, and error bars. More importantly, it focuses on the effect size of one's experiment/intervention, as opposed to a false dichotomy engendered by P values. An estimation plot has two key features: 1. It presents all datapoints as a swarmplot, which orders each point to display the underlying distribution. 2. It presents the effect size as a bootstrap 95% confidence interval on a separate but aligned axes. Estimation plots are introduced in Ho et al., Nature Methods 2019, 1548-7105. <doi:10.1038/s41592-019-0470-3>. The free-to-view PDF is located at <https://www.nature.com/articles/s41592-019-0470-3.epdf?author_access_token=Euy6APITxsYA3huBKOFBvNRgN0jAjWel9jnR3ZoTv0Pr6zJiJ3AA5aH4989gOJS_dajtNr1Wt17D0fh-t4GFcvqwMYN03qb8C33na_UrCUcGrt-Z0J9aPL6TPSbOxIC-pbHWKUDo2XsUOr3hQmlRew%3D%3D>. 2025-03-25
r-d3r public Provides a suite of functions to help ease the use of 'd3.js' in R. These helpers include 'htmltools::htmlDependency' functions, hierarchy builders, and conversion tools for 'partykit', 'igraph,' 'table', and 'data.frame' R objects into the 'JSON' that 'd3.js' expects. 2025-03-25
r-cvms public Cross-validate one or multiple regression and classification models and get relevant evaluation metrics in a tidy format. Validate the best model on a test set and compare it to a baseline evaluation. Alternatively, evaluate predictions from an external model. Currently supports regression and classification (binary and multiclass). Described in chp. 5 of Jeyaraman, B. P., Olsen, L. R., & Wambugu M. (2019, ISBN: 9781838550134). 2025-03-25
r-cvar public Compute expected shortfall (ES) and Value at Risk (VaR) from a quantile function, distribution function, random number generator or probability density function. ES is also known as Conditional Value at Risk (CVaR). Virtually any continuous distribution can be specified. The functions are vectorized over the arguments. The computations are done directly from the definitions, see e.g. Acerbi and Tasche (2002) <doi:10.1111/1468-0300.00091>. Some support for GARCH models is provided, as well. 2025-03-25
r-cubelyr public An implementation of a data cube extracted out of 'dplyr' for backward compatibility. 2025-03-25
r-cubble public A spatiotemperal data object in a relational data structure to separate the recording of time variant/ invariant variables. 2025-03-25
r-ctmm public Functions for identifying, fitting, and applying continuous-space, continuous-time stochastic-process movement models to animal tracking data. The package is described in Calabrese et al (2016) <doi:10.1111/2041-210X.12559>, with models and methods based on those introduced and detailed in Fleming & Calabrese et al (2014) <doi:10.1086/675504>, Fleming et al (2014) <doi:10.1111/2041-210X.12176>, Fleming et al (2015) <doi:10.1103/PhysRevE.91.032107>, Fleming et al (2015) <doi:10.1890/14-2010.1>, Fleming et al (2016) <doi:10.1890/15-1607>, Péron & Fleming et al (2016) <doi:10.1186/s40462-016-0084-7>, Fleming & Calabrese (2017) <doi:10.1111/2041-210X.12673>, Péron et al (2017) <doi:10.1002/ecm.1260>, Fleming et al (2017) <doi:10.1016/j.ecoinf.2017.04.008>, Fleming et al (2018) <doi:10.1002/eap.1704>, Winner & Noonan et al (2018) <doi:10.1111/2041-210X.13027>, Fleming et al (2019) <doi:10.1111/2041-210X.13270>, Noonan & Fleming et al (2019) <doi:10.1186/s40462-019-0177-1>, Fleming et al (2020) <doi:10.1101/2020.06.12.130195>, Noonan et al (2021) <doi:10.1111/2041-210X.13597>, Fleming et al (2022) <doi:10.1111/2041-210X.13815>, Silva et al (2022) <doi:10.1111/2041-210X.13786>, Alston & Fleming et al (2023) <doi:10.1111/2041-210X.14025>. 2025-03-25

© 2025 Anaconda, Inc. All Rights Reserved. (v4.0.9) Legal | Privacy Policy