r-bayesgarch
|
public |
Provides the bayesGARCH() function which performs the Bayesian estimation of the GARCH(1,1) model with Student's t innovations as described in Ardia (2008) <doi:10.1007/978-3-540-78657-3>.
|
2024-01-16 |
r-batchtools
|
public |
As a successor of the packages 'BatchJobs' and 'BatchExperiments', this package provides a parallel implementation of the Map function for high performance computing systems managed by schedulers 'IBM Spectrum LSF' (<https://www.ibm.com/products/hpc-workload-management>), 'OpenLava' (<https://www.openlava.org/>), 'Univa Grid Engine'/'Oracle Grid Engine' (<https://www.univa.com/>), 'Slurm' (<https://slurm.schedmd.com/>), 'TORQUE/PBS' (<https://adaptivecomputing.com/cherry-services/torque-resource-manager/>), or 'Docker Swarm' (<https://docs.docker.com/engine/swarm/>). A multicore and socket mode allow the parallelization on a local machines, and multiple machines can be hooked up via SSH to create a makeshift cluster. Moreover, the package provides an abstraction mechanism to define large-scale computer experiments in a well-organized and reproducible way.
|
2024-01-16 |
r-base
|
None |
R is a free software environment for statistical computing and graphics.
|
2024-01-16 |
r-bayesdccgarch
|
public |
Bayesian estimation of dynamic conditional correlation GARCH model for multivariate time series volatility (Fioruci, J.A., Ehlers, R.S. and Andrade-Filho, M.G., (2014). <doi:10.1080/02664763.2013.839635>.
|
2024-01-16 |
r-basefun
|
public |
Some very simple infrastructure for basis functions.
|
2024-01-16 |
r-bayescomm
|
public |
Bayesian multivariate binary (probit) regression models for analysis of ecological communities.
|
2024-01-16 |
r-batman
|
public |
Survey systems and other third-party data sources commonly use non-standard representations of logical values when it comes to qualitative data - "Yes", "No" and "N/A", say. batman is a package designed to seamlessly convert these into logicals. It is highly localised, and contains equivalents to boolean values in languages including German, French, Spanish, Italian, Turkish, Chinese and Polish.
|
2024-01-16 |
r-bamlss
|
public |
Infrastructure for estimating probabilistic distributional regression models in a Bayesian framework. The distribution parameters may capture location, scale, shape, etc. and every parameter may depend on complex additive terms (fixed, random, smooth, spatial, etc.) similar to a generalized additive model. The conceptual and computational framework is introduced in Umlauf, Klein, Zeileis (2019) <doi:10.1080/10618600.2017.1407325> and the R package in Umlauf, Klein, Simon, Zeileis (2021) <doi:10.18637/jss.v100.i04>.
|
2024-01-16 |
r-basicspace
|
public |
Conducts Aldrich-McKelvey and Blackbox Scaling (Poole et al 2016) <doi:10.18637/jss.v069.i07> to recover latent dimensions of judgment.
|
2024-01-16 |
r-autothresholdr
|
public |
Algorithms for automatically finding appropriate thresholds for numerical data, with special functions for thresholding images. Provides the 'ImageJ' 'Auto Threshold' plugin functionality to R users. See <https://imagej.net/plugins/auto-threshold> and Landini et al. (2017) <DOI:10.1111/jmi.12474>.
|
2024-01-16 |
r-base64url
|
public |
In contrast to RFC3548, the 62nd character ("+") is replaced with "-", the 63rd character ("/") is replaced with "_". Furthermore, the encoder does not fill the string with trailing "=". The resulting encoded strings comply to the regular expression pattern "[A-Za-z0-9_-]" and thus are safe to use in URLs or for file names. The package also comes with a simple base32 encoder/decoder suited for case insensitive file systems.
|
2024-01-16 |
r-base64enc
|
None |
This package provides tools for handling base64 encoding. It is more flexible than the orphaned base64 package.
|
2024-01-16 |
r-bas
|
public |
Package for Bayesian Variable Selection and Model Averaging in linear models and generalized linear models using stochastic or deterministic sampling without replacement from posterior distributions. Prior distributions on coefficients are from Zellner's g-prior or mixtures of g-priors corresponding to the Zellner-Siow Cauchy Priors or the mixture of g-priors from Liang et al (2008) <DOI:10.1198/016214507000001337> for linear models or mixtures of g-priors from Li and Clyde (2019) <DOI:10.1080/01621459.2018.1469992> in generalized linear models. Other model selection criteria include AIC, BIC and Empirical Bayes estimates of g. Sampling probabilities may be updated based on the sampled models using sampling w/out replacement or an efficient MCMC algorithm which samples models using a tree structure of the model space as an efficient hash table. See Clyde, Ghosh and Littman (2010) <DOI:10.1198/jcgs.2010.09049> for details on the sampling algorithms. Uniform priors over all models or beta-binomial prior distributions on model size are allowed, and for large p truncated priors on the model space may be used to enforce sampling models that are full rank. The user may force variables to always be included in addition to imposing constraints that higher order interactions are included only if their parents are included in the model. This material is based upon work supported by the National Science Foundation under Division of Mathematical Sciences grant 1106891. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
|
2024-01-16 |
r-bart
|
public |
Bayesian Additive Regression Trees (BART) provide flexible nonparametric modeling of covariates for continuous, binary, categorical and time-to-event outcomes. For more information see Sparapani, Spanbauer and McCulloch <doi:10.18637/jss.v097.i01>.
|
2024-01-16 |
r-barnard
|
public |
Barnard's unconditional test for 2x2 contingency tables.
|
2024-01-16 |
r-bamp
|
public |
Bayesian Age-Period-Cohort Modeling and Prediction using efficient Markov Chain Monte Carlo Methods. This is the R version of the previous BAMP software as described in Volker Schmid and Leonhard Held (2007) <DOI:10.18637/jss.v021.i08> Bayesian Age-Period-Cohort Modeling and Prediction - BAMP, Journal of Statistical Software 21:8. This package includes checks of convergence using Gelman's R.
|
2024-01-16 |
r-bammtools
|
public |
Provides functions for analyzing and visualizing complex macroevolutionary dynamics on phylogenetic trees. It is a companion package to the command line program BAMM (Bayesian Analysis of Macroevolutionary Mixtures) and is entirely oriented towards the analysis, interpretation, and visualization of evolutionary rates. Functionality includes visualization of rate shifts on phylogenies, estimating evolutionary rates through time, comparing posterior distributions of evolutionary rates across clades, comparing diversification models using Bayes factors, and more.
|
2024-01-16 |
r-bain
|
public |
Computes approximated adjusted fractional Bayes factors for equality, inequality, and about equality constrained hypotheses. For a tutorial on this method, see Hoijtink, Mulder, van Lissa, & Gu, (2019) <doi:10.31234/osf.io/v3shc>. For applications in structural equation modeling, see: Van Lissa, Gu, Mulder, Rosseel, Van Zundert, & Hoijtink, (2021) <doi:10.1080/10705511.2020.1745644>. For the statistical underpinnings, see Gu, Mulder, and Hoijtink (2018) <doi:10.1111/bmsp.12110>; Hoijtink, Gu, & Mulder, J. (2019) <doi:10.1111/bmsp.12145>; Hoijtink, Gu, Mulder, & Rosseel, (2019) <doi:10.31234/osf.io/q6h5w>.
|
2024-01-16 |
r-backports
|
public |
Functions introduced or changed since R v3.0.0 are re-implemented in this package. The backports are conditionally exported in order to let R resolve the function name to either the implemented backport, or the respective base version, if available. Package developers can make use of new functions or arguments by selectively importing specific backports to support older installations.
|
2024-01-16 |
r-ashr
|
public |
The R package 'ashr' implements an Empirical Bayes approach for large-scale hypothesis testing and false discovery rate (FDR) estimation based on the methods proposed in M. Stephens, 2016, "False discovery rates: a new deal", <DOI:10.1093/biostatistics/kxw041>. These methods can be applied whenever two sets of summary statistics---estimated effects and standard errors---are available, just as 'qvalue' can be applied to previously computed p-values. Two main interfaces are provided: ash(), which is more user-friendly; and ash.workhorse(), which has more options and is geared toward advanced users. The ash() and ash.workhorse() also provides a flexible modeling interface that can accommodate a variety of likelihoods (e.g., normal, Poisson) and mixture priors (e.g., uniform, normal).
|
2024-01-16 |
r-av
|
public |
Bindings to 'FFmpeg' <http://www.ffmpeg.org/> AV library for working with audio and video in R. Generates high quality video from images or R graphics with custom audio. Also offers high performance tools for reading raw audio, creating 'spectrograms', and converting between countless audio / video formats. This package interfaces directly to the C API and does not require any command line utilities.
|
2024-01-16 |
r-awsmethods
|
public |
Defines the method extract and provides 'openMP' support as needed in several packages.
|
2024-01-16 |
r-aws
|
public |
We provide a collection of R-functions implementing adaptive smoothing procedures in 1D, 2D and 3D. This includes the Propagation-Separation Approach to adaptive smoothing, the Intersecting Confidence Intervals (ICI), variational approaches and a non-local means filter. The package is described in detail in Polzehl J, Papafitsoros K, Tabelow K (2020). Patch-Wise Adaptive Weights Smoothing in R. Journal of Statistical Software, 95(6), 1-27. <doi:10.18637/jss.v095.i06>, Usage of the package in MR imaging is illustrated in Polzehl and Tabelow (2019), Magnetic Resonance Brain Imaging, Appendix A, Springer, Use R! Series. <doi:10.1007/978-3-030-29184-6_6>.
|
2024-01-16 |
r-audio
|
public |
Interfaces to audio devices (mainly sample-based) from R to allow recording and playback of audio. Built-in devices include Windows MM, Mac OS X AudioUnits and PortAudio (the last one is very experimental).
|
2024-01-16 |
r-aster2
|
public |
Aster models are exponential family regression models for life history analysis. They are like generalized linear models except that elements of the response vector can have different families (e. g., some Bernoulli, some Poisson, some zero-truncated Poisson, some normal) and can be dependent, the dependence indicated by a graphical structure. Discrete time survival analysis, zero-inflated Poisson regression, and generalized linear models that are exponential family (e. g., logistic regression and Poisson regression with log link) are special cases. Main use is for data in which there is survival over discrete time periods and there is additional data about what happens conditional on survival (e. g., number of offspring). Uses the exponential family canonical parameterization (aster transform of usual parameterization). Unlike the aster package, this package does dependence groups (nodes of the graph need not be conditionally independent given their predecessor node), including multinomial and two-parameter normal as families. Thus this package also generalizes mark-capture-recapture analysis.
|
2024-01-16 |
r-arfima
|
public |
Simulates, fits, and predicts long-memory and anti-persistent time series, possibly mixed with ARMA, regression, transfer-function components. Exact methods (MLE, forecasting, simulation) are used. Bug reports should be done via GitHub (at <https://github.com/JQVeenstra/arfima>), where the development version of this package lives; it can be installed using devtools.
|
2024-01-16 |
r-assist
|
public |
Fit various smoothing spline models. Includes an ssr() function for smoothing spline regression, an nnr() function for nonparametric nonlinear regression, an snr() function for semiparametric nonlinear regression, an slm() function for semiparametric linear mixed-effects models, and an snm() function for semiparametric nonlinear mixed-effects models. See Wang (2011) <doi:10.1201/b10954> for an overview.
|
2024-01-16 |
r-assa
|
public |
Functions to model and decompose time series into principal components using singular spectrum analysis (de Carvalho and Rua (2017) <doi:10.1016/j.ijforecast.2015.09.004>; de Carvalho et al (2012) <doi:10.1016/j.econlet.2011.09.007>).
|
2024-01-16 |
r-aspect
|
public |
Contains various functions for optimal scaling. One function performs optimal scaling by maximizing an aspect (i.e. a target function such as the sum of eigenvalues, sum of squared correlations, squared multiple correlations, etc.) of the corresponding correlation matrix. Another function performs implements the LINEALS approach for optimal scaling by minimization of an aspect based on pairwise correlations and correlation ratios. The resulting correlation matrix and category scores can be used for further multivariate methods such as structural equation models.
|
2024-01-16 |
r-askpass
|
public |
Cross-platform utilities for prompting the user for credentials or a passphrase, for example to authenticate with a server or read a protected key. Includes native programs for MacOS and Windows, hence no 'tcltk' is required. Password entry can be invoked in two different ways: directly from R via the askpass() function, or indirectly as password-entry back-end for 'ssh-agent' or 'git-credential' via the SSH_ASKPASS and GIT_ASKPASS environment variables. Thereby the user can be prompted for credentials or a passphrase if needed when R calls out to git or ssh.
|
2024-01-16 |
r-arulessequences
|
public |
Add-on for arules to handle and mine frequent sequences. Provides interfaces to the C++ implementation of cSPADE by Mohammed J. Zaki.
|
2024-01-16 |
r-ash
|
public |
David Scott's ASH routines ported from S-PLUS to R.
|
2024-01-16 |
r-apollo
|
public |
Choice models are a widely used technique across numerous scientific disciplines. The Apollo package is a very flexible tool for the estimation and application of choice models in R. Users are able to write their own model functions or use a mix of already available ones. Random heterogeneity, both continuous and discrete and at the level of individuals and choices, can be incorporated for all models. There is support for both standalone models and hybrid model structures. Both classical and Bayesian estimation is available, and multiple discrete continuous models are covered in addition to discrete choice. Multi-threading processing is supported for estimation and a large number of pre and post-estimation routines, including for computing posterior (individual-level) distributions are available. For examples, a manual, and a support forum, visit <http://www.ApolloChoiceModelling.com>. For more information on choice models see Train, K. (2009) <isbn:978-0-521-74738-7> and Hess, S. & Daly, A.J. (2014) <isbn:978-1-781-00314-5> for an overview of the field.
|
2024-01-16 |
r-arulescba
|
public |
Provides the infrastructure for association rule-based classification including the algorithms CBA, CMAR, CPAR, C4.5, FOIL, PART, PRM, RCAR, and RIPPER to build associative classifiers. Hahsler et al (2019) <doi:10.32614/RJ-2019-048>.
|
2024-01-16 |
r-arules
|
public |
Provides the infrastructure for representing, manipulating and analyzing transaction data and patterns (frequent itemsets and association rules). Also provides C implementations of the association mining algorithms Apriori and Eclat. Hahsler, Gruen and Hornik (2005) <doi:10.18637/jss.v014.i15>.
|
2024-01-16 |
r-ars
|
public |
Adaptive Rejection Sampling, Original version.
|
2024-01-16 |
r-arrapply
|
public |
High performance variant of apply() for a fixed set of functions. Considerable speedup of this implementation is a trade-off for universality: user defined functions cannot be used with this package. However, about 20 most currently employed functions are available for usage. They can be divided in three types: reducing functions (like mean(), sum() etc., giving a scalar when applied to a vector), mapping function (like normalise(), cumsum() etc., giving a vector of the same length as the input vector) and finally, vector reducing function (like diff() which produces result vector of a length different from the length of input vector). Optional or mandatory additional arguments required by some functions (e.g. norm type for norm()) can be passed as named arguments in '...'.
|
2024-01-16 |
r-arrangements
|
public |
Fast generators and iterators for permutations, combinations, integer partitions and compositions. The arrangements are in lexicographical order and generated iteratively in a memory efficient manner. It has been demonstrated that 'arrangements' outperforms most existing packages of similar kind. Benchmarks could be found at <https://randy3k.github.io/arrangements/articles/benchmark.html>.
|
2024-01-16 |
r-armspp
|
public |
An efficient 'Rcpp' implementation of the Adaptive Rejection Metropolis Sampling (ARMS) algorithm proposed by Gilks, W. R., Best, N. G. and Tan, K. K. C. (1995) <doi:10.2307/2986138>. This allows for sampling from a univariate target probability distribution specified by its (potentially unnormalised) log density.
|
2024-01-16 |
r-aricode
|
public |
Implements an efficient O(n) algorithm based on bucket-sorting for fast computation of standard clustering comparison measures. Available measures include adjusted Rand index (ARI), normalized information distance (NID), normalized mutual information (NMI), adjusted mutual information (AMI), normalized variation information (NVI) and entropy, as described in Vinh et al (2009) <doi:10.1145/1553374.1553511>. Include AMI (Adjusted Mutual Information) since version 0.1.2, a modified version of ARI (MARI), as described in Sundqvist et al. <doi:10.1007/s00180-022-01230-7> and simple Chi-square distance since version 1.0.0.
|
2024-01-16 |
r-anticlust
|
public |
The method of anticlustering partitions a pool of elements into groups (i.e., anticlusters) with the goal of maximizing between-group similarity or within-group heterogeneity. The anticlustering approach thereby reverses the logic of cluster analysis that strives for high within-group homogeneity and clear separation between groups. Computationally, anticlustering is accomplished by maximizing instead of minimizing a clustering objective function, such as the intra-cluster variance (used in k-means clustering) or the sum of pairwise distances within clusters. The main function anticlustering() gives access to exact and heuristic anticlustering methods described in Papenberg and Klau (2021; <doi:10.1037/met0000301>), Brusco et al. (2020; <doi:10.1111/bmsp.12186>), and Papenberg (2023; <doi:10.1111/bmsp.12315>). The exact algorithms require that an integer linear programming solver is installed, either the GNU linear programming kit (<https://www.gnu.org/software/glpk/glpk.html>) together with the interface package 'Rglpk' (<https://cran.R-project.org/package=Rglpk>), or the SYMPHONY ILP solver (<https://github.com/coin-or/SYMPHONY>) together with the interface package 'Rsymphony' (<https://cran.r-project.org/package=Rsymphony>). Full access to the bicriterion anticlustering method proposed by Brusco et al. (2020) is given via the function bicriterion_anticlustering(), while kplus_anticlustering() implements the full functionality of the k-plus anticlustering approach proposed by Papenberg (2023). Some other functions are available to solve classical clustering problems. The function balanced_clustering() applies a cluster analysis under size constraints, i.e., creates equal-sized clusters. The function matching() can be used for (unrestricted, bipartite, or K-partite) matching. The function wce() can be used optimally solve the (weighted) cluster editing problem, also known as correlation clustering, clique partitioning problem or transitivity clustering.
|
2024-01-16 |
r-aorsf
|
public |
Fit, interpret, and make predictions with oblique random survival forests. Oblique decision trees are notoriously slow compared to their axis based counterparts, but 'aorsf' runs as fast or faster than axis-based decision tree algorithms for right-censored time-to-event outcomes. Methods to accelerate and interpret the oblique random survival forest are described in Jaeger et al., (2023) <DOI:10.1080/10618600.2023.2231048>.
|
2024-01-16 |
r-apml0
|
public |
Fit linear, logistic and Cox models regularized with L0, lasso (L1), elastic-net (L1 and L2), or net (L1 and Laplacian) penalty, and their adaptive forms, such as adaptive lasso / elastic-net and net adjusting for signs of linked coefficients. It solves L0 penalty problem by simultaneously selecting regularization parameters and performing hard-thresholding or selecting number of non-zeros. This augmented and penalized minimization method provides an approximation solution to the L0 penalty problem, but runs as fast as L1 regularization problem. The package uses one-step coordinate descent algorithm and runs extremely fast by taking into account the sparsity structure of coefficients. It could deal with very high dimensional data and has superior selection performance.
|
2024-01-16 |
r-ape
|
None |
Functions for reading, writing, plotting, and manipulating phylogenetic trees, analyses of comparative data in a phylogenetic framework, ancestral character analyses, analyses of diversification and macroevolution, computing distances from DNA sequences, reading and writing nucleotide sequences as well as importing from BioConductor, and several tools such as Mantel's test, generalized skyline plots, graphical exploration of phylogenetic data (alex, trex, kronoviz), estimation of absolute evolutionary rates and clock-like trees using mean path lengths and penalized likelihood, dating trees with non-contemporaneous sequences, translating DNA into AA sequences, and assessing sequence alignments. Phylogeny estimation can be done with the NJ, BIONJ, ME, MVR, SDM, and triangle methods, and several methods handling incomplete distance matrices (NJ*, BIONJ*, MVR*, and the corresponding triangle method). Some functions call external applications (PhyML, Clustal, T-Coffee, Muscle) whose results are returned into R.
|
2024-01-16 |
r-analogue
|
public |
Fits Modern Analogue Technique and Weighted Averaging transfer function models for prediction of environmental data from species data, and related methods used in palaeoecology.
|
2024-01-16 |
r-apcluster
|
public |
Implements Affinity Propagation clustering introduced by Frey and Dueck (2007) <DOI:10.1126/science.1136800>. The algorithms are largely analogous to the 'Matlab' code published by Frey and Dueck. The package further provides leveraged affinity propagation and an algorithm for exemplar-based agglomerative clustering that can also be used to join clusters obtained from affinity propagation. Various plotting functions are available for analyzing clustering results.
|
2024-01-16 |
r-anytime
|
public |
Convert input in any one of character, integer, numeric, factor, or ordered type into 'POSIXct' (or 'Date') objects, using one of a number of predefined formats, and relying on Boost facilities for date and time parsing.
|
2024-01-16 |
r-alphashape3d
|
public |
Implementation in R of the alpha-shape of a finite set of points in the three-dimensional space. The alpha-shape generalizes the convex hull and allows to recover the shape of non-convex and even non-connected sets in 3D, given a random sample of points taken into it. Besides the computation of the alpha-shape, this package provides users with functions to compute the volume of the alpha-shape, identify the connected components and facilitate the three-dimensional graphical visualization of the estimated set.
|
2024-01-16 |
r-antiword
|
public |
Wraps the 'AntiWord' utility to extract text from Microsoft Word documents. The utility only supports the old 'doc' format, not the new xml based 'docx' format. Use the 'xml2' package to read the latter.
|
2024-01-16 |
r-anomalydetection
|
public |
No Summary
|
2024-01-16 |