r-neurobase
|
public |
Base package for 'Neuroconductor', which includes many helper functions that interact with objects of class 'nifti', implemented by package 'oro.nifti', for reading/writing and also other manipulation functions.
|
2025-03-25 |
r-neuralnettools
|
public |
Visualization and analysis tools to aid in the interpretation of neural network models. Functions are available for plotting, quantifying variable importance, conducting a sensitivity analysis, and obtaining a simple list of model weights.
|
2025-03-25 |
r-networktools
|
public |
Includes assorted tools for network analysis. Bridge centrality; goldbricker; MDS, PCA, & eigenmodel network plotting.
|
2025-03-25 |
r-networklite
|
public |
An implementation of some of the core 'network' package functionality based on a simplified data structure that is faster in many research applications. This package is designed for back-end use in the 'statnet' family of packages, including 'EpiModel'. Support is provided for binary and weighted, directed and undirected, bipartite and unipartite networks; no current support for multigraphs, hypergraphs, or loops.
|
2025-03-25 |
r-networktoolbox
|
public |
Implements network analysis and graph theory measures used in neuroscience, cognitive science, and psychology. Methods include various filtering methods and approaches such as threshold, dependency (Kenett, Tumminello, Madi, Gur-Gershgoren, Mantegna, & Ben-Jacob, 2010 <doi:10.1371/journal.pone.0015032>), Information Filtering Networks (Barfuss, Massara, Di Matteo, & Aste, 2016 <doi:10.1103/PhysRevE.94.062306>), and Efficiency-Cost Optimization (Fallani, Latora, & Chavez, 2017 <doi:10.1371/journal.pcbi.1005305>). Brain methods include the recently developed Connectome Predictive Modeling (see references in package). Also implements several network measures including local network characteristics (e.g., centrality), community-level network characteristics (e.g., community centrality), global network characteristics (e.g., clustering coefficient), and various other measures associated with the reliability and reproducibility of network analysis.
|
2025-03-25 |
r-networkcomparisontest
|
public |
This permutation based hypothesis test, suited for several types of data supported by the estimateNetwork function of the bootnet package (Epskamp & Fried, 2018), assesses the difference between two networks based on several invariance measures (network structure invariance, global strength invariance, edge invariance, several centrality measures, etc.). Network structures are estimated with l1-regularization. The Network Comparison Test is suited for comparison of independent (e.g., two different groups) and dependent samples (e.g., one group that is measured twice). See van Borkulo et al. (2021), available from <doi:10.1037/met0000476>.
|
2025-03-25 |
r-netstat
|
public |
R interface for the 'netstat' command line utility used to retrieve and parse commonly used network statistics, including available and in-use transmission control protocol (TCP) ports. Primers offering technical background information on the 'netstat' command line utility are available in the "Linux System Administrator's Manual" by Michael Kerrisk (2014) <https://man7.org/linux/man-pages/man8/netstat.8.html>, and on the Microsoft website (2017) <https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/netstat>.
|
2025-03-25 |
r-netmeta
|
public |
A comprehensive set of functions providing frequentist methods for network meta-analysis (Balduzzi et al., 2023) <doi:10.18637/jss.v106.i02> and supporting Schwarzer et al. (2015) <doi:10.1007/978-3-319-21416-0>, Chapter 8 "Network Meta-Analysis": - frequentist network meta-analysis following Rücker (2012) <doi:10.1002/jrsm.1058>; - additive network meta-analysis for combinations of treatments (Rücker et al., 2020) <doi:10.1002/bimj.201800167>; - network meta-analysis of binary data using the Mantel-Haenszel or non-central hypergeometric distribution method (Efthimiou et al., 2019) <doi:10.1002/sim.8158>; - rankograms and ranking of treatments by the Surface under the cumulative ranking curve (SUCRA) (Salanti et al., 2013) <doi:10.1016/j.jclinepi.2010.03.016>; - ranking of treatments using P-scores (frequentist analogue of SUCRAs without resampling) according to Rücker & Schwarzer (2015) <doi:10.1186/s12874-015-0060-8>; - split direct and indirect evidence to check consistency (Dias et al., 2010) <doi:10.1002/sim.3767>, (Efthimiou et al., 2019) <doi:10.1002/sim.8158>; - league table with network meta-analysis results; - 'comparison-adjusted' funnel plot (Chaimani & Salanti, 2012) <doi:10.1002/jrsm.57>; - net heat plot and design-based decomposition of Cochran's Q according to Krahn et al. (2013) <doi:10.1186/1471-2288-13-35>; - measures characterizing the flow of evidence between two treatments by König et al. (2013) <doi:10.1002/sim.6001>; - automated drawing of network graphs described in Rücker & Schwarzer (2016) <doi:10.1002/jrsm.1143>; - partial order of treatment rankings ('poset') and Hasse diagram for 'poset' (Carlsen & Bruggemann, 2014) <doi:10.1002/cem.2569>; (Rücker & Schwarzer, 2017) <doi:10.1002/jrsm.1270>; - contribution matrix as described in Papakonstantinou et al. (2018) <doi:10.12688/f1000research.14770.3> and Davies et al. (2022) <doi:10.1002/sim.9346>.
|
2025-03-25 |
r-nestedmodels
|
public |
A modelling framework for nested data using the 'tidymodels' ecosystem. Specify how to nest data using the 'recipes' package, create testing and training splits using 'rsample', and fit models to this data using the 'parsnip' and 'workflows' packages. Allows any model to be fit to nested data.
|
2025-03-25 |
r-neonutilities
|
public |
NEON data packages can be accessed through the NEON Data Portal <https://www.neonscience.org> or through the NEON Data API (see <https://data.neonscience.org/data-api> for documentation). Data delivered from the Data Portal are provided as monthly zip files packaged within a parent zip file, while individual files can be accessed from the API. This package provides tools that aid in discovering, downloading, and reformatting data prior to use in analyses. This includes downloading data via the API, merging data tables by type, and converting formats. For more information, see the readme file at <https://github.com/NEONScience/NEON-utilities>.
|
2025-03-25 |
r-nestedlogit
|
public |
Provides functions for specifying and fitting nested dichotomy logistic regression models for a multi-category response and methods for summarising and plotting those models. Nested dichotomies are statistically independent, and hence provide an additive decomposition of tests for the overall 'polytomous' response. When the dichotomies make sense substantively, this method can be a simpler alternative to the standard 'multinomial' logistic model which compares response categories to a reference level. See: J. Fox (2016), "Applied Regression Analysis and Generalized Linear Models", 3rd Ed., ISBN 1452205663.
|
2025-03-25 |
r-nestedcv
|
public |
Implements nested k*l-fold cross-validation for lasso and elastic-net regularised linear models via the 'glmnet' package and other machine learning models via the 'caret' package. Cross-validation of 'glmnet' alpha mixing parameter and embedded fast filter functions for feature selection are provided. Described as double cross-validation by Stone (1977) <doi:10.1111/j.2517-6161.1977.tb01603.x>. Also implemented is a method using outer CV to measure unbiased model performance metrics when fitting Bayesian linear and logistic regression shrinkage models using the horseshoe prior over parameters to encourage a sparse model as described by Piironen & Vehtari (2017) <doi:10.1214/17-EJS1337SI>.
|
2025-03-25 |
r-ncdfgeom
|
public |
Tools to create time series and geometry 'NetCDF' files.
|
2025-03-25 |
r-naniar
|
public |
Missing values are ubiquitous in data and need to be explored and handled in the initial stages of analysis. 'naniar' provides data structures and functions that facilitate the plotting of missing values and examination of imputations. This allows missing data dependencies to be explored with minimal deviation from the common work patterns of 'ggplot2' and tidy data. The work is fully discussed at Tierney & Cook (2023) <doi:10.18637/jss.v105.i07>.
|
2025-03-25 |
r-nasapower
|
public |
An API client for NASA POWER global meteorology, surface solar energy and climatology data API. POWER (Prediction Of Worldwide Energy Resource) data are freely available for download with varying spatial resolutions dependent on the original data and with several temporal resolutions depending on the POWER parameter and community. This work is funded through the NASA Earth Science Directorate Applied Science Program. For more on the data themselves, the methodologies used in creating, a web- based data viewer and web access, please see <https://power.larc.nasa.gov/>.
|
2025-03-25 |
r-naepirtparams
|
public |
This data package contains the Item Response Theory (IRT) parameters for the National Center for Education Statistics (NCES) items used on the National Assessment of Education Progress (NAEP) from 1990 to 2015. The values in these tables are used along with NAEP data to turn student item responses into scores and include information about item difficulty, discrimination, and guessing parameter for 3 parameter logit (3PL) items. Parameters for Generalized Partial Credit Model (GPCM) items are also included. The adjustments table contains the information regarding the treatment of items (e.g., deletion of an item or a collapsing of response categories), when these items did not appear to fit the item response models used to describe the NAEP data. Transformation constants change the score estimates that are obtained from the IRT scaling program to the NAEP reporting metric. Values from the years 2000 - 2013 were taken from the NCES website <https://nces.ed.gov/nationsreportcard/> and values from 1990 - 1998 and 2015 were extracted from their NAEP data files. All subtest names were reduced and homogenized to one word (e.g. "Reading to gain information" became "information"). The various subtest names for univariate transformation constants were all homogenized to "univariate".
|
2025-03-25 |
r-mvoutlier
|
public |
Various methods for multivariate outlier detection: arw, a Mahalanobis-type method with an adaptive outlier cutoff value; locout, a method incorporating local neighborhood; pcout, a method for high-dimensional data; mvoutlier.CoDa, a method for compositional data. References are provided in the corresponding help files.
|
2025-03-25 |
r-mxm
|
public |
Many feature selection methods for a wide range of response variables, including minimal, statistically-equivalent and equally-predictive feature subsets. Bayesian network algorithms and related functions are also included. The package name 'MXM' stands for "Mens eX Machina", meaning "Mind from the Machine" in Latin. References: a) Lagani, V. and Athineou, G. and Farcomeni, A. and Tsagris, M. and Tsamardinos, I. (2017). Feature Selection with the R Package MXM: Discovering Statistically Equivalent Feature Subsets. Journal of Statistical Software, 80(7). <doi:10.18637/jss.v080.i07>. b) Tsagris, M., Lagani, V. and Tsamardinos, I. (2018). Feature selection for high-dimensional temporal data. BMC Bioinformatics, 19:17. <doi:10.1186/s12859-018-2023-7>. c) Tsagris, M., Borboudakis, G., Lagani, V. and Tsamardinos, I. (2018). Constraint-based causal discovery with mixed data. International Journal of Data Science and Analytics, 6(1): 19-30. <doi:10.1007/s41060-018-0097-y>. d) Tsagris, M., Papadovasilakis, Z., Lakiotaki, K. and Tsamardinos, I. (2018). Efficient feature selection on gene expression data: Which algorithm to use? BioRxiv. <doi:10.1101/431734>. e) Tsagris, M. (2019). Bayesian Network Learning with the PC Algorithm: An Improved and Correct Variation. Applied Artificial Intelligence, 33(2):101-123. <doi:10.1080/08839514.2018.1526760>. f) Tsagris, M. and Tsamardinos, I. (2019). Feature selection with the R package MXM. F1000Research 7: 1505. <doi:10.12688/f1000research.16216.2>. g) Borboudakis, G. and Tsamardinos, I. (2019). Forward-Backward Selection with Early Dropping. Journal of Machine Learning Research 20: 1-39. h) The gamma-OMP algorithm for feature selection with application to gene expression data. IEEE/ACM Transactions on Computational Biology and Bioinformatics 19(2): 1214-1224. <doi:10.1109/TCBB.2020.3029952>.
|
2025-03-25 |
r-mvquad
|
public |
Provides methods to construct multivariate grids, which can be used for multivariate quadrature. This grids can be based on different quadrature rules like Newton-Cotes formulas (trapezoidal-, Simpson's- rule, ...) or Gauss quadrature (Gauss-Hermite, Gauss-Legendre, ...). For the construction of the multidimensional grid the product-rule or the combination- technique can be applied.
|
2025-03-25 |
r-mvn
|
public |
Performs multivariate normality tests and graphical approaches and implements multivariate outlier detection and univariate normality of marginal distributions through plots and tests, and performs multivariate Box-Cox transformation (Korkmaz et al, (2014), <https://journal.r-project.org/archive/2014-2/korkmaz-goksuluk-zararsiz.pdf>).
|
2025-03-25 |
r-mvinfluence
|
public |
Computes regression deletion diagnostics for multivariate linear models and provides some associated diagnostic plots. The diagnostic measures include hat-values (leverages), generalized Cook's distance, and generalized squared 'studentized' residuals. Several types of plots to detect influential observations are provided.
|
2025-03-25 |
r-mva
|
public |
Functions, data sets, analyses and examples from the book `An Introduction to Applied Multivariate Analysis with R' (Brian S. Everitt and Torsten Hothorn, Springer, 2011).
|
2025-03-25 |
r-multilinguer
|
public |
Provides install functions of other languages such as 'java', 'python'.
|
2025-03-25 |
r-multidplyr
|
public |
Partition a data frame across multiple worker processes to provide simple multicore parallelism.
|
2025-03-25 |
r-msmtools
|
public |
A fast and general method for restructuring classical longitudinal data into augmented ones. The reason for this is to facilitate the modeling of longitudinal data under a multi-state framework using the 'msm' package.
|
2025-03-25 |
r-msigdbr
|
public |
Provides the 'Molecular Signatures Database' (MSigDB) gene sets typically used with the 'Gene Set Enrichment Analysis' (GSEA) software (Subramanian et al. 2005 <doi:10.1073/pnas.0506580102>, Liberzon et al. 2015 <doi:10.1016/j.cels.2015.12.004>) in a standard R data frame with key-value pairs. The package includes the human genes as listed in MSigDB as well as the corresponding symbols and IDs for frequently studied model organisms such as mouse, rat, pig, fly, and yeast.
|
2025-03-25 |
r-mschart
|
public |
Create native charts for 'Microsoft PowerPoint' and 'Microsoft Word' documents. These can then be edited and annotated. Functions are provided to let users create charts, modify and format their content. The chart's underlying data is automatically saved within the 'Word' document or 'PowerPoint' presentation. It extends package 'officer' that does not contain any feature for 'Microsoft' native charts production.
|
2025-03-25 |
r-mrds
|
public |
Animal abundance estimation via conventional, multiple covariate and mark-recapture distance sampling (CDS/MCDS/MRDS). Detection function fitting is performed via maximum likelihood. Also included are diagnostics and plotting for fitted detection functions. Abundance estimation is via a Horvitz-Thompson-like estimator.
|
2025-03-25 |
r-mr.raps
|
public |
Mendelian randomization is a method of identifying and estimating a confounded causal effect using genetic instrumental variables. This packages implements methods for two-sample Mendelian randomization with summary statistics by using Robust Adjusted Profile Score (RAPS). References: Qingyuan Zhao, Jingshu Wang, Jack Bowden, Dylan S. Small. Statistical inference in two-sample summary-data Mendelian randomization using robust adjusted profile score. <arXiv:1801.09652>.
|
2025-03-25 |
r-mrbin
|
public |
A collection of functions for processing and analyzing metabolite data. The namesake function mrbin() converts 1D or 2D Nuclear Magnetic Resonance data into a matrix of values suitable for further data analysis and performs basic processing steps in a reproducible way. Negative values, a common issue in such data, can be replaced by positive values (<doi:10.1021/acs.jproteome.0c00684>). All used parameters are stored in a readable text file and can be restored from that file to enable exact reproduction of the data at a later time. The function fia() ranks features according to their impact on classifier models, especially artificial neural network models.
|
2025-03-25 |
r-mpoly
|
public |
Symbolic computing with multivariate polynomials in R.
|
2025-03-25 |
r-mplusautomation
|
public |
Leverages the R language to automate latent variable model estimation and interpretation using 'Mplus', a powerful latent variable modeling program developed by Muthen and Muthen (<https://www.statmodel.com>). Specifically, this package provides routines for creating related groups of models, running batches of models, and extracting and tabulating model parameters and fit statistics.
|
2025-03-25 |
r-mosaiccalc
|
public |
Software to support the introductory *MOSAIC Calculus* textbook <https://www.mosaic-web.org/MOSAIC-Calculus/>), one of many data- and modeling-oriented educational resources developed by Project MOSAIC (<https://www.mosaic-web.org/>). Provides symbolic and numerical differentiation and integration, as well as support for applied linear algebra (for data science), and differential equations/dynamics. Includes grammar-of-graphics-based functions for drawing vector fields, trajectories, etc. The software is suitable for general use, but intended mainly for teaching calculus.
|
2025-03-25 |
r-mosaiccore
|
public |
Common utilities used in other MOSAIC-family packages are collected here.
|
2025-03-25 |
r-mosaic
|
public |
Data sets and utilities from Project MOSAIC (<http://www.mosaic-web.org>) used to teach mathematics, statistics, computation and modeling. Funded by the NSF, Project MOSAIC is a community of educators working to tie together aspects of quantitative work that students in science, technology, engineering and mathematics will need in their professional lives, but which are usually taught in isolation, if at all.
|
2025-03-25 |
r-moonbook
|
public |
Several analysis-related functions for the book entitled "R statistics and graph for medical articles" (written in Korean), version 1, by Keon-Woong Moon with Korean demographic data with several plot functions.
|
2025-03-25 |
r-mortalitylaws
|
public |
Fit the most popular human mortality 'laws', and construct full and abridge life tables given various input indices. A mortality law is a parametric function that describes the dying-out process of individuals in a population during a significant portion of their life spans. For a comprehensive review of the most important mortality laws see Tabeau (2001) <doi:10.1007/0-306-47562-6_1>. Practical functions for downloading data from various human mortality databases are provided as well.
|
2025-03-25 |
r-monitor
|
public |
Acoustic template detection and monitoring database interface. Create, modify, save, and use templates for detection of animal vocalizations. View, verify, and extract results. Upload a MySQL schema to a existing instance, manage survey metadata, write and read templates and detections locally or to the database.
|
2025-03-25 |
r-modistsp
|
public |
Allows automating the creation of time series of rasters derived from MODIS satellite land products data. It performs several typical preprocessing steps such as download, mosaicking, reprojecting and resizing data acquired on a specified time period. All processing parameters can be set using a user-friendly GUI. Users can select which layers of the original MODIS HDF files they want to process, which additional quality indicators should be extracted from aggregated MODIS quality assurance layers and, in the case of surface reflectance products, which spectral indexes should be computed from the original reflectance bands. For each output layer, outputs are saved as single-band raster files corresponding to each available acquisition date. Virtual files allowing access to the entire time series as a single file are also created. Command-line execution exploiting a previously saved processing options file is also possible, allowing users to automatically update time series related to a MODIS product whenever a new image is available. For additional documentation refer to the following article: Busetto and Ranghetti (2016) <doi:10.1016/j.cageo.2016.08.020>.
|
2025-03-25 |
r-modistools
|
public |
Programmatic interface to the Oak Ridge National Laboratories 'MODIS Land Products Subsets' web services (<https://modis.ornl.gov/data/modis_webservice.html>). Allows for easy downloads of 'MODIS' time series directly to your R workspace or your computer.
|
2025-03-25 |
r-moderndive
|
public |
Datasets and wrapper functions for tidyverse-friendly introductory linear regression, used in "Statistical Inference via Data Science: A ModernDive into R and the Tidyverse" available at <https://moderndive.com/>.
|
2025-03-25 |
r-modest
|
public |
User-friendly Shiny apps for designing and evaluating phase I cancer clinical trials, with the aim to estimate the maximum tolerated dose (MTD) of a novel drug, using a Bayesian decision procedure based on logistic regression.
|
2025-03-25 |
r-modeltime.resample
|
public |
A 'modeltime' extension that implements forecast resampling tools that assess time-based model performance and stability for a single time series, panel data, and cross-sectional time series analysis.
|
2025-03-25 |
r-modeltime.ensemble
|
public |
A 'modeltime' extension that implements time series ensemble forecasting methods including model averaging, weighted averaging, and stacking. These techniques are popular methods to improve forecast accuracy and stability. Refer to papers such as "Machine-Learning Models for Sales Time Series Forecasting" Pavlyshenko, B.M. (2019) <doi:10.3390>.
|
2025-03-25 |
r-modelsummary
|
public |
Create beautiful and customizable tables to summarize several statistical models side-by-side. Draw coefficient plots, multi-level cross-tabs, dataset summaries, balance tables (a.k.a. "Table 1s"), and correlation matrices. This package supports dozens of statistical models, and it can produce tables in HTML, LaTeX, Word, Markdown, PDF, PowerPoint, Excel, RTF, JPG, or PNG. Tables can easily be embedded in 'Rmarkdown' or 'knitr' dynamic documents. Details can be found in Arel-Bundock (2022) <doi:10.18637/jss.v103.i01>.
|
2025-03-25 |
r-modeltests
|
public |
Provides a number of testthat tests that can be used to verify that tidy(), glance() and augment() methods meet consistent specifications. This allows methods for the same generic to be spread across multiple packages, since all of those packages can make the same guarantees to users about returned objects.
|
2025-03-25 |
r-modeltime
|
public |
The time series forecasting framework for use with the 'tidymodels' ecosystem. Models include ARIMA, Exponential Smoothing, and additional time series models from the 'forecast' and 'prophet' packages. Refer to "Forecasting Principles & Practice, Second edition" (<https://otexts.com/fpp2/>). Refer to "Prophet: forecasting at scale" (<https://research.facebook.com/blog/2017/02/prophet-forecasting-at-scale/>.).
|
2025-03-25 |
r-modelenv
|
public |
An developer focused, low dependency package in 'tidymodels' that provides functions to register how models are to be used. Functions to register models are complimented with accessor functions to retrieve registered model information to aid in model fitting and error handling.
|
2025-03-25 |
r-modelmap
|
public |
Creates sophisticated models of training data and validates the models with an independent test set, cross validation, or Out Of Bag (OOB) predictions on the training data. Create graphs and tables of the model validation results. Applies these models to GIS .img files of predictors to create detailed prediction surfaces. Handles large predictor files for map making, by reading in the .img files in chunks, and output to the .txt file the prediction for each data chunk, before reading the next chunk of data.
|
2025-03-25 |
r-modeldata
|
public |
Data sets used for demonstrating or testing model-related packages are contained in this package.
|
2025-03-25 |