About Anaconda Help Download Anaconda

r / packages

Package Name Access Summary Updated
r-biwavelet public This is a port of the WTC MATLAB package written by Aslak Grinsted and the wavelet program written by Christopher Torrence and Gibert P. Compo. This package can be used to perform univariate and bivariate (cross-wavelet, wavelet coherence, wavelet clustering) analyses. 2025-04-22
r-bioacoustics public Contains all the necessary tools to process audio recordings of various formats (e.g., WAV, WAC, MP3, ZC), filter noisy files, display audio signals, detect and extract automatically acoustic features for further analysis such as classification. 2025-04-22
r-bipartite public Functions to visualise webs and calculate a series of indices commonly used to describe pattern in (ecological) webs. It focuses on webs consisting of only two levels (bipartite), e.g. pollination webs or predator-prey-webs. Visualisation is important to get an idea of what we are actually looking at, while the indices summarise different aspects of the web's topology. 2025-04-22
r-binsegrcpp public Standard template library containers are used to implement an efficient binary segmentation algorithm, which is log-linear on average and quadratic in the worst case. 2025-04-22
r-bigutilsr public Utility functions for large-scale data. For now, package 'bigutilsr' mainly includes functions for outlier detection and unbiased PCA projection. 2025-04-22
r-bigstatsr public Easy-to-use, efficient, flexible and scalable statistical tools. Package bigstatsr provides and uses Filebacked Big Matrices via memory-mapping. It provides for instance matrix operations, Principal Component Analysis, sparse linear supervised models, utility functions and more <doi:10.1093/bioinformatics/bty185>. 2025-04-22
r-bigsnpr public Easy-to-use, efficient, flexible and scalable tools for analyzing massive SNP arrays. Privé et al. (2018) <doi:10.1093/bioinformatics/bty185>. 2025-04-22
r-bigrquery public Easily talk to Google's 'BigQuery' database from R. 2025-04-22
r-bigsparser public Provide a sparse matrix format with data stored on disk, to be used in both R and C++. This is intended for more efficient use of sparse data in C++ and also when parallelizing, since data on disk does not need copying. Only a limited number of features will be implemented. For now, conversion can be performed from a 'dgCMatrix' or a 'dsCMatrix' from R package 'Matrix'. A new compact format is also now available. 2025-04-22
r-biglasso public Extend lasso and elastic-net model fitting for ultra high-dimensional, multi-gigabyte data sets that cannot be loaded into memory. Designed to be more memory- and computation-efficient than existing lasso-fitting packages like 'glmnet' and 'ncvreg', thus allowing the user to analyze big data analysis even on an ordinary laptop. 2025-04-22
r-bifiesurvey public Contains tools for survey statistics (especially in educational assessment) for datasets with replication designs (jackknife, bootstrap, replicate weights; see Kolenikov, 2010; Pfefferman & Rao, 2009a, 2009b, <doi:10.1016/S0169-7161(09)70003-3>, <doi:10.1016/S0169-7161(09)70037-9>); Shao, 1996, <doi:10.1080/02331889708802523>). Descriptive statistics, linear and logistic regression, path models for manifest variables with measurement error correction and two-level hierarchical regressions for weighted samples are included. Statistical inference can be conducted for multiply imputed datasets and nested multiply imputed datasets and is in particularly suited for the analysis of plausible values (for details see George, Oberwimmer & Itzlinger-Bruneforth, 2016; Bruneforth, Oberwimmer & Robitzsch, 2016; Robitzsch, Pham & Yanagida, 2016). The package development was supported by BIFIE (Federal Institute for Educational Research, Innovation and Development of the Austrian School System; Salzburg, Austria). 2025-04-22
r-bgw public Performs statistical estimation and inference-related computations by accessing and executing modified versions of 'Fortran' subroutines originally published in the Association for Computing Machinery (ACM) journal Transactions on Mathematical Software (TOMS) by Bunch, Gay and Welsch (1993) <doi:10.1145/151271.151279>. The acronym 'BGW' (from the authors' last names) will be used when making reference to technical content (e.g., algorithm, methodology) that originally appeared in ACM TOMS. A key feature of BGW is that it exploits the special structure of statistical estimation problems within a trust-region-based optimization approach to produce an estimation algorithm that is much more effective than the usual practice of using optimization methods and codes originally developed for general optimization. The 'bgw' package bundles 'R' wrapper (and related) functions with modified 'Fortran' source code so that it can be compiled and linked in the 'R' environment for fast execution. This version implements a function ('bgw_mle.R') that performs maximum likelihood estimation (MLE) for a user-provided model object that computes probabilities (a.k.a. probability densities). The motivation for producing this initial version is to provide fast, efficient, and reliable MLE for discrete choice models that can be called from the 'Apollo' choice modelling 'R' package: see <http://www.apollochoicemodelling.com>. However, estimation can also be performed in a stand-alone fashion without using 'Apollo' (as shown in simple examples). After this initial version is available on CRAN, an updated version of 'Apollo' (0.2.9) will be made available that automatically loads 'bgw'. Additional development can then occur, including more detailed examples in 'bgw' that refer to 'Apollo.' Note also that BGW capabilities are not limited to MLE, and future extension to other estimators (e.g., nonlinear least squares, generalized method of moments, etc.) is possible. The 'Fortran' code included in 'bgw' was modified by one of the original BGW authors (Bunch) under his rights as confirmed by direct consultation with the ACM Intellectual Property and Rights Manager. See <https://authors.acm.org/author-resources/author-rights>. The main requirement is clear citation of the original publication (see above). 2025-04-22
r-biclust public The main function biclust() provides several algorithms to find biclusters in two-dimensional data: Cheng and Church (2000, ISBN:1-57735-115-0), spectral (2003) <doi:10.1101/gr.648603>, plaid model (2005) <doi:10.1016/j.csda.2004.02.003>, xmotifs (2003) <doi:10.1142/9789812776303_0008> and bimax (2006) <doi:10.1093/bioinformatics/btl060>. In addition, the package provides methods for data preprocessing (normalization and discretisation), visualisation, and validation of bicluster solutions. 2025-04-22
r-bglr public Bayesian Generalized Linear Regression. 2025-04-22
r-bfast public Decomposition of time series into trend, seasonal, and remainder components with methods for detecting and characterizing abrupt changes within the trend and seasonal components. 'BFAST' can be used to analyze different types of satellite image time series and can be applied to other disciplines dealing with seasonal or non-seasonal time series, such as hydrology, climatology, and econometrics. The algorithm can be extended to label detected changes with information on the parameters of the fitted piecewise linear models. 'BFAST' monitoring functionality is described in Verbesselt et al. (2010) <doi:10.1016/j.rse.2009.08.014>. 'BFAST monitor' provides functionality to detect disturbance in near real-time based on 'BFAST'- type models, and is described in Verbesselt et al. (2012) <doi:10.1016/j.rse.2012.02.022>. 'BFAST Lite' approach is a flexible approach that handles missing data without interpolation, and will be described in an upcoming paper. Furthermore, different models can now be used to fit the time series data and detect structural changes (breaks). 2025-04-22
r-bfpack public Implementation of default Bayes factors for testing statistical hypotheses under various statistical models. The package is intended for applied quantitative researchers in the social and behavioral sciences, medical research, and related fields. The Bayes factor tests can be executed for statistical models such as univariate and multivariate normal linear models, correlation analysis, generalized linear models, special cases of linear mixed models, survival models, relational event models. Parameters that can be tested are location parameters (e.g., group means, regression coefficients), variances (e.g., group variances), and measures of association (e.g,. polychoric/polyserial/biserial/tetrachoric/product moments correlations), among others. The statistical underpinnings are described in Mulder and Xin (2019) <DOI:10.1080/00273171.2021.1904809>, Mulder and Gelissen (2019) <DOI:10.1080/02664763.2021.1992360>, Mulder (2016) <DOI:10.1016/j.jmp.2014.09.004>, Mulder and Fox (2019) <DOI:10.1214/18-BA1115>, Mulder and Fox (2013) <DOI:10.1007/s11222-011-9295-3>, Boeing-Messing, van Assen, Hofman, Hoijtink, and Mulder (2017) <DOI:10.1037/met0000116>, Hoijtink, Mulder, van Lissa, and Gu, (2018) <DOI:10.31234/osf.io/v3shc>, Gu, Mulder, and Hoijtink, (2018) <DOI:10.1111/bmsp.12110>, Hoijtink, Gu, and Mulder, (2018) <DOI:10.1111/bmsp.12145>, and Hoijtink, Gu, Mulder, and Rosseel, (2018) <DOI:10.1037/met0000187>. When using the packages, please refer to Mulder et al. (2021) <DOI:10.18637/jss.v100.i18>. 2025-04-22
r-bessel public Computations for Bessel function for complex, real and partly 'mpfr' (arbitrary precision) numbers; notably interfacing TOMS 644; approximations for large arguments, experiments, etc. 2025-04-22
r-bench public Tools to accurately benchmark and analyze execution times for R expressions. 2025-04-22
r-benchmarking public Methods for frontier analysis, Data Envelopment Analysis (DEA), under different technology assumptions (fdh, vrs, drs, crs, irs, add/frh, and fdh+), and using different efficiency measures (input based, output based, hyperbolic graph, additive, super, and directional efficiency). Peers and slacks are available, partial price information can be included, and optimal cost, revenue and profit can be calculated. Evaluation of mergers is also supported. Methods for graphing the technology sets are also included. There is also support for comparative methods based on Stochastic Frontier Analyses (SFA) and for convex nonparametric least squares of convex functions (STONED). In general, the methods can be used to solve not only standard models, but also many other model variants. It complements the book, Bogetoft and Otto, Benchmarking with DEA, SFA, and R, Springer-Verlag, 2011, but can of course also be used as a stand-alone package. 2025-04-22
r-bekks public Methods and tools for estimating, simulating and forecasting of so-called BEKK-models (named after Baba, Engle, Kraft and Kroner) based on the fast Berndt–Hall–Hall–Hausman (BHHH) algorithm described in Hafner and Herwartz (2008) <doi:10.1007/s00184-007-0130-y>. 2025-04-22
r-bchron public Enables quick calibration of radiocarbon dates under various calibration curves (including user generated ones); age-depth modelling as per the algorithm of Haslett and Parnell (2008) <DOI:10.1111/j.1467-9876.2008.00623.x>; Relative sea level rate estimation incorporating time uncertainty in polynomial regression models (Parnell and Gehrels 2015) <DOI:10.1002/9781118452547.ch32>; non-parametric phase modelling via Gaussian mixtures as a means to determine the activity of a site (and as an alternative to the Oxcal function SUM; currently unpublished), and reverse calibration of dates from calibrated into un-calibrated years (also unpublished). 2025-04-22
r-bbotk public Features highly configurable search spaces via the 'paradox' package and optimizes every user-defined objective function. The package includes several optimization algorithms e.g. Random Search, Iterated Racing, Bayesian Optimization (in 'mlr3mbo') and Hyperband (in 'mlr3hyperband'). bbotk is the base package of 'mlr3tuning', 'mlr3fselect' and 'miesmuschel'. 2025-04-22
r-bcee public A Bayesian model averaging approach to causal effect estimation based on the BCEE algorithm. Currently supports binary or continuous exposures and outcomes. For more details, see Talbot et al. (2015) <doi:10.1515/jci-2014-0035> Talbot and Beaudoin (2022) <doi:10.1515/jci-2021-0023>. 2025-04-22
r-bayestfr public Making probabilistic projections of total fertility rate for all countries of the world, using a Bayesian hierarchical model <doi:10.1007/s13524-011-0040-5> <doi:10.18637/jss.v106.i08>. Subnational probabilistic projections are also supported <doi:10.4054/DemRes.2018.38.60>. 2025-04-22
r-bayesmallows public An implementation of the Bayesian version of the Mallows rank model (Vitelli et al., Journal of Machine Learning Research, 2018 <https://jmlr.org/papers/v18/15-481.html>; Crispino et al., Annals of Applied Statistics, 2019 <doi:10.1214/18-AOAS1203>; Sorensen et al., R Journal, 2020 <doi:10.32614/RJ-2020-026>; Stein, PhD Thesis, 2023 <https://eprints.lancs.ac.uk/id/eprint/195759>). Both Metropolis-Hastings and sequential Monte Carlo algorithms for estimating the models are available. Cayley, footrule, Hamming, Kendall, Spearman, and Ulam distances are supported in the models. The rank data to be analyzed can be in the form of complete rankings, top-k rankings, partially missing rankings, as well as consistent and inconsistent pairwise preferences. Several functions for plotting and studying the posterior distributions of parameters are provided. The package also provides functions for estimating the partition function (normalizing constant) of the Mallows rank model, both with the importance sampling algorithm of Vitelli et al. and asymptotic approximation with the IPFP algorithm (Mukherjee, Annals of Statistics, 2016 <doi:10.1214/15-AOS1389>). 2025-04-22

© 2025 Anaconda, Inc. All Rights Reserved. (v4.2.1) Legal | Privacy Policy