About Anaconda Help Download Anaconda

r / packages

Package Name Access Summary Updated
r-ggforce public The aim of 'ggplot2' is to aid in visual data investigations. This focus has led to a lack of facilities for composing specialised plots. 'ggforce' aims to be a collection of mainly new stats and geoms that fills this gap. All additional functionality is aimed to come through the official extension system so using 'ggforce' should be a stable experience. 2025-04-22
r-ggiraph public Create interactive 'ggplot2' graphics using 'htmlwidgets'. 2025-04-22
r-ggirread public Reads data collected from wearable acceleratometers as used in sleep and physical activity research. Currently supports file formats: binary data from 'GENEActiv' <https://activinsights.com/>, binary data from GENEA devices (not for sale), and .cwa-format and .wav-format data from 'Axivity' <https://axivity.com>. Primarily designed to complement R package GGIR <https://CRAN.R-project.org/package=GGIR>. 2025-04-22
r-getip public A micro-package for getting your 'IP' address, either the local/internal or the public/external one. Currently only 'IPv4' addresses are supported. 2025-04-22
r-geos public Provides an R API to the Open Source Geometry Engine ('GEOS') library (<https://libgeos.org/>) and a vector format with which to efficiently store 'GEOS' geometries. High-performance functions to extract information from, calculate relationships between, and transform geometries are provided. Finally, facilities to import and export geometry vectors to other spatial formats are provided. 2025-04-22
r-geor public Geostatistical analysis including variogram-based, likelihood-based and Bayesian methods. Software companion for Diggle and Ribeiro (2007) <doi:10.1007/978-0-387-48536-2>. 2025-04-22
r-geomap public Set of routines for making map projections (forward and inverse), topographic maps, perspective plots, geological maps, geological map symbols, geological databases, interactive plotting and selection of focus regions. 2025-04-22
r-geogrid public Turn irregular polygons (such as geographical regions) into regular or hexagonal grids. This package enables the generation of regular (square) and hexagonal grids through the package 'sp' and then assigns the content of the existing polygons to the new grid using the Hungarian algorithm, Kuhn (1955) (<doi:10.1007/978-3-540-68279-0_2>). This prevents the need for manual generation of hexagonal grids or regular grids that are supposed to reflect existing geography. 2025-04-22
r-geiger public Methods for fitting macroevolutionary models to phylogenetic trees Pennell (2014) <doi:10.1093/bioinformatics/btu181>. 2025-04-22
r-gdina public A set of psychometric tools for cognitive diagnosis modeling based on the generalized deterministic inputs, noisy and gate (G-DINA) model by de la Torre (2011) <DOI:10.1007/s11336-011-9207-7> and its extensions, including the sequential G-DINA model by Ma and de la Torre (2016) <DOI:10.1111/bmsp.12070> for polytomous responses, and the polytomous G-DINA model by Chen and de la Torre <DOI:10.1177/0146621613479818> for polytomous attributes. Joint attribute distribution can be independent, saturated, higher-order, loglinear smoothed or structured. Q-matrix validation, item and model fit statistics, model comparison at test and item level and differential item functioning can also be conducted. A graphical user interface is also provided. For tutorials, please check Ma and de la Torre (2020) <DOI:10.18637/jss.v093.i14>, Ma and de la Torre (2019) <DOI:10.1111/emip.12262>, Ma (2019) <DOI:10.1007/978-3-030-05584-4_29> and de la Torre and Akbay (2019). 2025-04-22
r-gaston public Manipulation of genetic data (SNPs). Computation of GRM and dominance matrix, LD, heritability with efficient algorithms for linear mixed model (AIREML). Dandine et al <doi:10.1159/000488519>. 2025-04-22
r-gaupro public Fits a Gaussian process model to data. Gaussian processes are commonly used in computer experiments to fit an interpolating model. The model is stored as an 'R6' object and can be easily updated with new data. There are options to run in parallel, and 'Rcpp' has been used to speed up calculations. For more info about Gaussian process software, see Erickson et al. (2018) <doi:10.1016/j.ejor.2017.10.002>. 2025-04-22
r-gas public Simulate, estimate and forecast using univariate and multivariate GAS models as described in Ardia et al. (2019) <doi:10.18637/jss.v088.i06>. 2025-04-22
r-gamlss public Functions for fitting the Generalized Additive Models for Location Scale and Shape introduced by Rigby and Stasinopoulos (2005), <doi:10.1111/j.1467-9876.2005.00510.x>. The models use a distributional regression approach where all the parameters of the conditional distribution of the response variable are modelled using explanatory variables. 2025-04-22
r-fwildclusterboot public Implementation of fast algorithms for wild cluster bootstrap inference developed in 'Roodman et al' (2019, 'STATA' Journal, <doi:10.1177/1536867X19830877>) and 'MacKinnon et al' (2022), which makes it feasible to quickly calculate bootstrap test statistics based on a large number of bootstrap draws even for large samples. Multiple bootstrap types as described in 'MacKinnon, Nielsen & Webb' (2022) are supported. Further, 'multiway' clustering, regression weights, bootstrap weights, fixed effects and 'subcluster' bootstrapping are supported. Further, both restricted ('WCR') and unrestricted ('WCU') bootstrap are supported. Methods are provided for a variety of fitted models, including 'lm()', 'feols()' (from package 'fixest') and 'felm()' (from package 'lfe'). Additionally implements a 'heteroskedasticity-robust' ('HC1') wild bootstrap. Last, the package provides an R binding to 'WildBootTests.jl', which provides additional speed gains and functionality, including the 'WRE' bootstrap for instrumental variable models (based on models of type 'ivreg()' from package 'ivreg') and hypotheses with q > 1. 2025-04-22
r-frontier public Maximum Likelihood Estimation of Stochastic Frontier Production and Cost Functions. Two specifications are available: the error components specification with time-varying efficiencies (Battese and Coelli, 1992, <doi:10.1007/BF00158774>) and a model specification in which the firm effects are directly influenced by a number of variables (Battese and Coelli, 1995, <doi:10.1007/BF01205442>). 2025-04-22
r-frk public A tool for spatial/spatio-temporal modelling and prediction with large datasets. The approach models the field, and hence the covariance function, using a set of basis functions. This fixed-rank basis-function representation facilitates the modelling of big data, and the method naturally allows for non-stationary, anisotropic covariance functions. Discretisation of the spatial domain into so-called basic areal units (BAUs) facilitates the use of observations with varying support (i.e., both point-referenced and areal supports, potentially simultaneously), and prediction over arbitrary user-specified regions. `FRK` also supports inference over various manifolds, including the 2D plane and 3D sphere, and it provides helper functions to model, fit, predict, and plot with relative ease. Version 2.0.0 and above also supports the modelling of non-Gaussian data (e.g., Poisson, binomial, negative-binomial, gamma, and inverse-Gaussian) by employing a generalised linear mixed model (GLMM) framework. Zammit-Mangion and Cressie <doi:10.18637/jss.v098.i04> describe `FRK` in a Gaussian setting, and detail its use of basis functions and BAUs, while Sainsbury-Dale et al. <arXiv:2110.02507> describe `FRK` in a non-Gaussian setting; two vignettes are available that summarise these papers and provide additional examples. 2025-04-22
r-freealg public The free algebra in R with non-commuting indeterminates. Uses 'disordR' discipline (Hankin, 2022, <doi:10.48550/ARXIV.2210.03856>). To cite the package in publications please use Hankin (2022) <doi:10.48550/ARXIV.2211.04002>. 2025-04-22
r-fmtr public Contains a set of functions that can be used to apply formats to data frames or vectors. The package aims to provide to functionality similar to that of SASĀ® formats. Formats are assigned to the format attribute on data frame columns. Then when the fdata() function is called, a new data frame is created with the column data formatted as specified. The package also contains a value() function to create a user-defined format, similar to a SASĀ® user-defined format. 2025-04-22
r-fme public Provides functions to help in fitting models to data, to perform Monte Carlo, sensitivity and identifiability analysis. It is intended to work with models be written as a set of differential equations that are solved either by an integration routine from package 'deSolve', or a steady-state solver from package 'rootSolve'. However, the methods can also be used with other types of functions. 2025-04-22
r-fmesher public Generate planar and spherical triangle meshes, compute finite element calculations for 1- and 2-dimensional flat and curved manifolds with associated basis function spaces, methods for lines and polygons, and transparent handling of coordinate reference systems and coordinate transformation, including 'sf' and 'sp' geometries. The core 'fmesher' library code was originally part of the 'INLA' package, and implements parts of "Triangulations and Applications" by Hjelle and Daehlen (2006) <doi:10.1007/3-540-33261-8>. 2025-04-22
r-flexsurv public Flexible parametric models for time-to-event data, including the Royston-Parmar spline model, generalized gamma and generalized F distributions. Any user-defined parametric distribution can be fitted, given at least an R function defining the probability density or hazard. There are also tools for fitting and predicting from fully parametric multi-state models, based on either cause-specific hazards or mixture models. 2025-04-22
r-fkf public This is a fast and flexible implementation of the Kalman filter and smoother, which can deal with NAs. It is entirely written in C and relies fully on linear algebra subroutines contained in BLAS and LAPACK. Due to the speed of the filter, the fitting of high-dimensional linear state space models to large datasets becomes possible. This package also contains a plot function for the visualization of the state vector and graphical diagnostics of the residuals. 2025-04-22
r-filearray public Stores large arrays in files to avoid occupying large memories. Implemented with super fast gigabyte-level multi-threaded reading/writing via 'OpenMP'. Supports multiple non-character data types (double, float, complex, integer, logical, and raw). 2025-04-22
r-fdasrvf public Performs alignment, PCA, and modeling of multidimensional and unidimensional functions using the square-root velocity framework (Srivastava et al., 2011 <arXiv:1103.3817> and Tucker et al., 2014 <DOI:10.1016/j.csda.2012.12.001>). This framework allows for elastic analysis of functional data through phase and amplitude separation. 2025-04-22

© 2025 Anaconda, Inc. All Rights Reserved. (v4.2.0) Legal | Privacy Policy