r-mrgsolve
|
public |
Fast simulation from ordinary differential equation (ODE) based models typically employed in quantitative pharmacology and systems biology.
|
2025-04-22 |
r-mrfdepth
|
public |
Tools to compute depth measures and implementations of related tasks such as outlier detection, data exploration and classification of multivariate, regression and functional data.
|
2025-04-22 |
r-move
|
public |
Contains functions to access movement data stored in 'movebank.org' as well as tools to visualize and statistically analyze animal movement data, among others functions to calculate dynamic Brownian Bridge Movement Models. Move helps addressing movement ecology questions.
|
2025-04-22 |
r-mpath
|
public |
Algorithms compute robust estimators for loss functions in the concave convex (CC) family by the iteratively reweighted convex optimization (IRCO), an extension of the iteratively reweighted least squares (IRLS). The IRCO reduces the weight of the observation that leads to a large loss; it also provides weights to help identify outliers. Applications include robust (penalized) generalized linear models and robust support vector machines. The package also contains penalized Poisson, negative binomial, zero-inflated Poisson, zero-inflated negative binomial regression models and robust models with non-convex loss functions. Wang et al. (2014) <doi:10.1002/sim.6314>, Wang et al. (2015) <doi:10.1002/bimj.201400143>, Wang et al. (2016) <doi:10.1177/0962280214530608>, Wang (2021) <doi:10.1007/s11749-021-00770-2>, Wang (2020) <arXiv:2010.02848>.
|
2025-04-22 |
r-mousetrap
|
public |
Mouse-tracking, the analysis of mouse movements in computerized experiments, is a method that is becoming increasingly popular in the cognitive sciences. The mousetrap package offers functions for importing, preprocessing, analyzing, aggregating, and visualizing mouse-tracking data. An introduction into mouse-tracking analyses using mousetrap can be found in Wulff, Kieslich, Henninger, Haslbeck, & Schulte-Mecklenbeck (2023) <doi:10.31234/osf.io/v685r> (preprint: <https://osf.io/preprints/psyarxiv/v685r>).
|
2025-04-22 |
r-movehmm
|
public |
Provides tools for animal movement modelling using hidden Markov models. These include processing of tracking data, fitting hidden Markov models to movement data, visualization of data and fitted model, decoding of the state process, etc. <doi:10.1111/2041-210X.12578>.
|
2025-04-22 |
r-mmrm
|
public |
Mixed models for repeated measures (MMRM) are a popular choice for analyzing longitudinal continuous outcomes in randomized clinical trials and beyond; see Cnaan, Laird and Slasor (1997) <doi:10.1002/(SICI)1097-0258(19971030)16:20%3C2349::AID-SIM667%3E3.0.CO;2-E> for a tutorial and Mallinckrodt, Lane and Schnell (2008) <doi:10.1177/009286150804200402> for a review. This package implements MMRM based on the marginal linear model without random effects using Template Model Builder ('TMB') which enables fast and robust model fitting. Users can specify a variety of covariance matrices, weight observations, fit models with restricted or standard maximum likelihood inference, perform hypothesis testing with Satterthwaite or Kenward-Roger adjustment, and extract least square means estimates by using 'emmeans'.
|
2025-04-22 |
r-mombf
|
public |
Model selection and averaging for regression and mixtures, inclusing Bayesian model selection and information criteria (BIC, EBIC, AIC, GIC).
|
2025-04-22 |
r-mokken
|
public |
Contains functions for performing Mokken scale analysis on test and questionnaire data. It includes an automated item selection algorithm, and various checks of model assumptions.
|
2025-04-22 |
r-mlpack
|
public |
A fast, flexible machine learning library, written in C++, that aims to provide fast, extensible implementations of cutting-edge machine learning algorithms. See also Curtin et al. (2023) <doi:10.21105/joss.05026>.
|
2025-04-22 |
r-mlt
|
public |
Likelihood-based estimation of conditional transformation models via the most likely transformation approach described in Hothorn et al. (2018) <DOI:10.1111/sjos.12291> and Hothorn (2020) <DOI:10.18637/jss.v092.i01>.
|
2025-04-22 |
r-mmapcharr
|
public |
Uses memory-mapping to enable the random access of elements of a text file of characters separated by characters as if it were a simple R(cpp) matrix.
|
2025-04-22 |
r-mlr3mbo
|
public |
A modern and flexible approach to Bayesian Optimization / Model Based Optimization building on the 'bbotk' package. 'mlr3mbo' is a toolbox providing both ready-to-use optimization algorithms as well as their fundamental building blocks allowing for straightforward implementation of custom algorithms. Single- and multi-objective optimization is supported as well as mixed continuous, categorical and conditional search spaces. Moreover, using 'mlr3mbo' for hyperparameter optimization of machine learning models within the 'mlr3' ecosystem is straightforward via 'mlr3tuning'. Examples of ready-to-use optimization algorithms include Efficient Global Optimization by Jones et al. (1998) <doi:10.1023/A:1008306431147>, ParEGO by Knowles (2006) <doi:10.1109/TEVC.2005.851274> and SMS-EGO by Ponweiser et al. (2008) <doi:10.1007/978-3-540-87700-4_78>.
|
2025-04-22 |
r-mixtools
|
public |
Analyzes finite mixture models for various parametric and semiparametric settings. This includes mixtures of parametric distributions (normal, multivariate normal, multinomial, gamma), various Reliability Mixture Models (RMMs), mixtures-of-regressions settings (linear regression, logistic regression, Poisson regression, linear regression with changepoints, predictor-dependent mixing proportions, random effects regressions, hierarchical mixtures-of-experts), and tools for selecting the number of components (bootstrapping the likelihood ratio test statistic, mixturegrams, and model selection criteria). Bayesian estimation of mixtures-of-linear-regressions models is available as well as a novel data depth method for obtaining credible bands. This package is based upon work supported by the National Science Foundation under Grant No. SES-0518772 and the Chan Zuckerberg Initiative: Essential Open Source Software for Science (Grant No. 2020-255193).
|
2025-04-22 |
r-mixr
|
public |
Performs maximum likelihood estimation for finite mixture models for families including Normal, Weibull, Gamma and Lognormal by using EM algorithm, together with Newton-Raphson algorithm or bisection method when necessary. It also conducts mixture model selection by using information criteria or bootstrap likelihood ratio test. The data used for mixture model fitting can be raw data or binned data. The model fitting process is accelerated by using R package 'Rcpp'.
|
2025-04-22 |
r-mixl
|
public |
Specification and estimation of multinomial logit models. Large datasets and complex models are supported, with an intuitive syntax. Multinomial Logit Models, Mixed models, random coefficients and Hybrid Choice are all supported. For more information, see Molloy et al. (2019) <doi:10.3929/ethz-b-000334289>.
|
2025-04-22 |
r-mixak
|
public |
Contains a mixture of statistical methods including the MCMC methods to analyze normal mixtures. Additionally, model based clustering methods are implemented to perform classification based on (multivariate) longitudinal (or otherwise correlated) data. The basis for such clustering is a mixture of multivariate generalized linear mixed models.
|
2025-04-22 |
r-mirt
|
public |
Analysis of discrete response data using unidimensional and multidimensional item analysis models under the Item Response Theory paradigm (Chalmers (2012) <doi:10.18637/jss.v048.i06>). Exploratory and confirmatory item factor analysis models are estimated with quadrature (EM) or stochastic (MHRM) methods. Confirmatory bi-factor and two-tier models are available for modeling item testlets using dimension reduction EM algorithms, while multiple group analyses and mixed effects designs are included for detecting differential item, bundle, and test functioning, and for modeling item and person covariates. Finally, latent class models such as the DINA, DINO, multidimensional latent class, mixture, and zero-inflated response models are supported.
|
2025-04-22 |
r-mirtcat
|
public |
Provides tools to generate HTML interfaces for adaptive and non-adaptive tests using the shiny package (Chalmers (2016) <doi:10.18637/jss.v071.i05>). Suitable for applying unidimensional and multidimensional computerized adaptive tests (CAT) using item response theory methodology and for creating simple questionnaires forms to collect response data directly in R. Additionally, optimal test designs (e.g., "shadow testing") are supported for tests that contain a large number of item selection constraints. Finally, package contains tools useful for performing Monte Carlo simulations for studying test item banks.
|
2025-04-22 |
r-miceadds
|
public |
Contains functions for multiple imputation which complements existing functionality in R. In particular, several imputation methods for the mice package (van Buuren & Groothuis-Oudshoorn, 2011, <doi:10.18637/jss.v045.i03>) are implemented. Main features of the miceadds package include plausible value imputation (Mislevy, 1991, <doi:10.1007/BF02294457>), multilevel imputation for variables at any level or with any number of hierarchical and non-hierarchical levels (Grund, Luedtke & Robitzsch, 2018, <doi:10.1177/1094428117703686>; van Buuren, 2018, Ch.7, <doi:10.1201/9780429492259>), imputation using partial least squares (PLS) for high dimensional predictors (Robitzsch, Pham & Yanagida, 2016), nested multiple imputation (Rubin, 2003, <doi:10.1111/1467-9574.00217>), substantive model compatible imputation (Bartlett et al., 2015, <doi:10.1177/0962280214521348>), and features for the generation of synthetic datasets (Reiter, 2005, <doi:10.1111/j.1467-985X.2004.00343.x>; Nowok, Raab, & Dibben, 2016, <doi:10.18637/jss.v074.i11>).
|
2025-04-22 |
r-mice
|
public |
Multiple imputation using Fully Conditional Specification (FCS) implemented by the MICE algorithm as described in Van Buuren and Groothuis-Oudshoorn (2011) <doi:10.18637/jss.v045.i03>. Each variable has its own imputation model. Built-in imputation models are provided for continuous data (predictive mean matching, normal), binary data (logistic regression), unordered categorical data (polytomous logistic regression) and ordered categorical data (proportional odds). MICE can also impute continuous two-level data (normal model, pan, second-level variables). Passive imputation can be used to maintain consistency between variables. Various diagnostic plots are available to inspect the quality of the imputations.
|
2025-04-22 |
r-mhurdle
|
public |
Estimation of models with zero left-censored variables. Null values may be caused by a selection process Cragg (1971) <doi:10.2307/1909582>, insufficient resources Tobin (1958) <doi:10.2307/1907382> or infrequency of purchase Deaton and Irish (1984) <doi:10.1016/0047-2727(84)90067-7>.
|
2025-04-22 |
r-mev
|
public |
Various tools for the analysis of univariate, multivariate and functional extremes. Exact simulation from max-stable processes [Dombry, Engelke and Oesting (2016) <doi:10.1093/biomet/asw008>, R-Pareto processes for various parametric models, including Brown-Resnick (Wadsworth and Tawn, 2014, <doi:10.1093/biomet/ast042>) and Extremal Student (Thibaud and Opitz, 2015, <doi:10.1093/biomet/asv045>). Threshold selection methods, including Wadsworth (2016) <doi:10.1080/00401706.2014.998345>, and Northrop and Coleman (2014) <doi:10.1007/s10687-014-0183-z>. Multivariate extreme diagnostics. Estimation and likelihoods for univariate extremes, e.g., Coles (2001) <doi:10.1007/978-1-4471-3675-0>.
|
2025-04-22 |
r-metabma
|
public |
Computes the posterior model probabilities for standard meta-analysis models (null model vs. alternative model assuming either fixed- or random-effects, respectively). These posterior probabilities are used to estimate the overall mean effect size as the weighted average of the mean effect size estimates of the random- and fixed-effect model as proposed by Gronau, Van Erp, Heck, Cesario, Jonas, & Wagenmakers (2017, <doi:10.1080/23743603.2017.1326760>). The user can define a wide range of non-informative or informative priors for the mean effect size and the heterogeneity coefficient. Moreover, using pre-compiled Stan models, meta-analysis with continuous and discrete moderators with Jeffreys-Zellner-Siow (JZS) priors can be fitted and tested. This allows to compute Bayes factors and perform Bayesian model averaging across random- and fixed-effects meta-analysis with and without moderators. For a primer on Bayesian model-averaged meta-analysis, see Gronau, Heck, Berkhout, Haaf, & Wagenmakers (2021, <doi:10.1177/25152459211031256>).
|
2025-04-22 |
r-metacoder
|
public |
A set of tools for parsing, manipulating, and graphing data classified by a hierarchy (e.g. a taxonomy).
|
2025-04-22 |