About Anaconda Help Download Anaconda

r / packages

Package Name Access Summary Updated
r-mixtureregltic public Fit mixture regression models with nonsusceptibility/cure for left-truncated and interval-censored (LTIC) data (see Chen et al. (2013) <doi:10.1002/sim.5845>). This package also provides the nonparametric maximum likelihood estimator (NPMLE) for the survival/event curves with LTIC data. 2025-03-25
r-mixture public An implementation of 14 parsimonious mixture models for model-based clustering or model-based classification. Gaussian, Student's t, generalized hyperbolic, variance-gamma or skew-t mixtures are available. All approaches work with missing data. Celeux and Govaert (1995) <doi:10.1016/0031-3203(94)00125-6>, Browne and McNicholas (2014) <doi:10.1007/s11634-013-0139-1>, Browne and McNicholas (2015) <doi:10.1002/cjs.11246>. 2025-03-25
r-mixsqp public Provides an optimization method based on sequential quadratic programming (SQP) for maximum likelihood estimation of the mixture proportions in a finite mixture model where the component densities are known. The algorithm is expected to obtain solutions that are at least as accurate as the state-of-the-art MOSEK interior-point solver (called by function "KWDual" in the 'REBayes' package), and they are expected to arrive at solutions more quickly when the number of samples is large and the number of mixture components is not too large. This implements the "mix-SQP" algorithm, with some improvements, described in Y. Kim, P. Carbonetto, M. Stephens & M. Anitescu (2020) <DOI:10.1080/10618600.2019.1689985>. 2025-03-25
r-mixsim public The utility of this package is in simulating mixtures of Gaussian distributions with different levels of overlap between mixture components. Pairwise overlap, defined as a sum of two misclassification probabilities, measures the degree of interaction between components and can be readily employed to control the clustering complexity of datasets simulated from mixtures. These datasets can then be used for systematic performance investigation of clustering and finite mixture modeling algorithms. Among other capabilities of 'MixSim', there are computing the exact overlap for Gaussian mixtures, simulating Gaussian and non-Gaussian data, simulating outliers and noise variables, calculating various measures of agreement between two partitionings, and constructing parallel distribution plots for the graphical display of finite mixture models. 2025-03-25
r-mixor public Provides the function 'mixor' for fitting a mixed-effects ordinal and binary response models and associated methods for printing, summarizing, extracting estimated coefficients and variance-covariance matrix, and estimating contrasts for the fitted models. 2025-03-25
r-mixmatrix public Provides sampling and density functions for matrix variate normal, t, and inverted t distributions; ML estimation for matrix variate normal and t distributions using the EM algorithm, including some restrictions on the parameters; and classification by linear and quadratic discriminant analysis for matrix variate normal and t distributions described in Thompson et al. (2019) <doi:10.1080/10618600.2019.1696208>. Performs clustering with matrix variate normal and t mixture models. 2025-03-25
r-mixedmem public Fits mixed membership models with discrete multivariate data (with or without repeated measures) following the general framework of Erosheva et al (2004). This package uses a Variational EM approach by approximating the posterior distribution of latent memberships and selecting hyperparameters through a pseudo-MLE procedure. Currently supported data types are Bernoulli, multinomial and rank (Plackett-Luce). The extended GoM model with fixed stayers from Erosheva et al (2007) is now also supported. See Airoldi et al (2014) for other examples of mixed membership models. 2025-03-25
r-mixeddataimpute public Missing data imputation for continuous and categorical data, using nonparametric Bayesian joint models (specifically the hierarchically coupled mixture model with local dependence described in Murray and Reiter (2015); see 'citation("MixedDataImpute")' or http://arxiv.org/abs/1410.0438). See '?hcmm_impute' for example usage. 2025-03-25
r-mix public Estimation/multiple imputation programs for mixed categorical and continuous data. 2025-03-25
r-misssbm public When a network is partially observed (here, NAs in the adjacency matrix rather than 1 or 0 due to missing information between node pairs), it is possible to account for the underlying process that generates those NAs. 'missSBM', presented in 'Barbillon, Chiquet and Tabouy' (2022) <doi:10.18637/jss.v101.i12>, adjusts the popular stochastic block model from network data sampled under various missing data conditions, as described in 'Tabouy, Barbillon and Chiquet' (2019) <doi:10.1080/01621459.2018.1562934>. 2025-03-25
r-mirada public This package collects algorithms/functions developed for microRNA profiling data analyses. Analytical platforms include traditional hybridization microarray, CGH, beads-based microarray, and qRT-PCR array. 2025-03-25
r-minpack.lm public The nls.lm function provides an R interface to lmder and lmdif from the MINPACK library, for solving nonlinear least-squares problems by a modification of the Levenberg-Marquardt algorithm, with support for lower and upper parameter bounds. The implementation can be used via nls-like calls using the nlsLM function. 2025-03-25
r-minerva public Wrapper for 'minepy' implementation of Maximal Information-based Nonparametric Exploration statistics (MIC and MINE family). Detailed information of the ANSI C implementation of 'minepy' can be found at <http://minepy.readthedocs.io/en/latest>. 2025-03-25
r-mined public This is a method (MinED) for mining probability distributions using deterministic sampling which is proposed by Joseph, Wang, Gu, Lv, and Tuo (2019) <DOI:10.1080/00401706.2018.1552203>. The MinED samples can be used for approximating the target distribution. They can be generated from a density function that is known only up to a proportionality constant and thus, it might find applications in Bayesian computation. Moreover, the MinED samples are generated with much fewer evaluations of the density function compared to random sampling-based methods such as MCMC and therefore, this method will be especially useful when the unnormalized posterior is expensive or time consuming to evaluate. This research is supported by a U.S. National Science Foundation grant DMS-1712642. 2025-03-25
r-microseq public Basic functions for microbial sequence data analysis. The idea is to use generic R data structures as much as possible, making R data wrangling possible also for sequence data. 2025-03-25
r-micefast public Fast imputations under the object-oriented programming paradigm. Moreover there are offered a few functions built to work with popular R packages such as 'data.table' or 'dplyr'. The biggest improvement in time performance could be achieve for a calculation where a grouping variable have to be used. A single evaluation of a quantitative model for the multiple imputations is another major enhancement. A new major improvement is one of the fastest predictive mean matching in the R world because of presorting and binary search. 2025-03-25
r-mhtmult public A Comprehensive tool for almost all existing multiple testing methods for multiple families. The package summarizes the existing methods for multiple families multiple testing procedures (MTPs) such as double FDR, group Benjamini-Hochberg (GBH) procedure and average FDR controlling procedure. The package also provides some novel multiple testing procedures using selective inference idea. 2025-03-25
r-mht public Multiple Hypothesis Testing For Variable Selection in high dimensional linear models. This package performs variable selection with multiple hypothesis testing, either for ordered variable selection or non-ordered variable selection. In both cases, a sequential procedure is performed. It starts to test the null hypothesis "no variable is relevant"; if this hypothesis is rejected, it then tests "only the first variable is relevant", and so on until the null hypothesis is accepted. 2025-03-25
r-mhsmm public Parameter estimation and prediction for hidden Markov and semi-Markov models for data with multiple observation sequences. Suitable for equidistant time series data, with multivariate and/or missing data. Allows user defined emission distributions. 2025-03-25
r-mgsda public Implements Multi-Group Sparse Discriminant Analysis proposal of I.Gaynanova, J.Booth and M.Wells (2016), Simultaneous sparse estimation of canonical vectors in the p>>N setting, JASA <doi:10.1080/01621459.2015.1034318>. 2025-03-25
r-mgl public An aggressive dimensionality reduction and network estimation technique for a high-dimensional Gaussian graphical model (GGM). Please refer to: Efficient Dimensionality Reduction for High-Dimensional Network Estimation, Safiye Celik, Benjamin A. Logsdon, Su-In Lee, Proceedings of The 31st International Conference on Machine Learning, 2014, p. 1953--1961. 2025-03-25
r-mgarchbekk public Procedures to simulate, estimate and diagnose MGARCH processes of BEKK and multivariate GJR (bivariate asymmetric GARCH model) specification. 2025-03-25
r-mfgarch public Estimating GARCH-MIDAS (MIxed-DAta-Sampling) models (Engle, Ghysels, Sohn, 2013, <doi:10.1162/REST_a_00300>) and related statistical inference, accompanying the paper "Two are better than one: Volatility forecasting using multiplicative component GARCH models" by Conrad and Kleen (2020, <doi:10.1002/jae.2742>). The GARCH-MIDAS model decomposes the conditional variance of (daily) stock returns into a short- and long-term component, where the latter may depend on an exogenous covariate sampled at a lower frequency. 2025-03-25
r-mewavg public Compute the average of a sequence of random vectors in a moving expanding window using a fixed amount of memory. 2025-03-25
r-meteor public A set of functions for weather and climate data manipulation, and other helper functions, to support dynamic ecological modeling, particularly crop and crop disease modeling. 2025-03-25
r-metaheuristicfpa public A nature-inspired metaheuristics algorithm based on the pollination process of flowers. This R package makes it easy to implement the standard flower pollination algorithm for every user. The algorithm was first developed by Xin-She Yang in 2012 (<DOI:10.1007/978-3-642-32894-7_27>). 2025-03-25
r-metafolio public A tool to simulate salmon metapopulations and apply financial portfolio optimization concepts. The package accompanies the paper Anderson et al. (2015) <doi:10.1101/2022.03.24.485545>. 2025-03-25
r-metadynminer public Metadynamics is a state of the art biomolecular simulation technique. 'Plumed' Tribello, G.A. et al. (2014) <doi:10.1016/j.cpc.2013.09.018> program makes it possible to perform metadynamics using various simulation codes. The results of metadynamics done in 'Plumed' can be analyzed by 'metadynminer'. The package 'metadynminer' reads 1D and 2D metadynamics hills files from 'Plumed' package. It uses a fast algorithm by Hosek, P. and Spiwok, V. (2016) <doi:10.1016/j.cpc.2015.08.037> to calculate a free energy surface from hills. Minima can be located and plotted on the free energy surface. Transition states can be analyzed by Nudged Elastic Band method by Henkelman, G. and Jonsson, H. (2000) <doi:10.1063/1.1323224>. Free energy surfaces, minima and transition paths can be plotted to produce publication quality images. 2025-03-25
r-mergetrees public Aggregates a set of trees with the same leaves to create a consensus tree. The trees are typically obtained via hierarchical clustering, hence the hclust format is used to encode both the aggregated trees and the final consensus tree. The method is exact and proven to be O(nqlog(n)), n being the individuals and q being the number of trees to aggregate. 2025-03-25
r-memuse public How much ram do you need to store a 100,000 by 100,000 matrix? How much ram is your current R session using? How much ram do you even have? Learn the scintillating answer to these and many more such questions with the 'memuse' package. 2025-03-25
r-memo public A simple in-memory, LRU cache that can be wrapped around any function to memoize it. The cache is keyed on a hash of the input data (using 'digest') or on pointer equivalence. 2025-03-25
r-memnet public Efficient implementations of network science tools to facilitate research into human (semantic) memory. In its current version, the package contains several methods to infer networks from verbal fluency data, various network growth models, diverse (switcher-) random walk processes, and tools to analyze and visualize networks. To deliver maximum performance the majority of the code is written in C++. For an application see: Wulff, D. U., Hills, T., & Mata, R. (2018) <doi:10.31234/osf.io/s73dp>. 2025-03-25
r-mediak public Calculates MeDiA_K (means Mean Distance Association by K-nearest neighbor) in order to detect nonlinear associations. 2025-03-25
r-v8 public An R interface to V8 <https://v8.dev>: Google's open source JavaScript and WebAssembly engine. This package can be compiled either with V8 version 6 and up or NodeJS when built as a shared library. 2025-03-25
r-weco public Western Electric Company Rules (WECO) have been widely used for Shewhart control charts in order to increase the sensitivity of detecting assignable causes of process change. This package implements eight commonly used WECO rules and allow to apply the combination of these individual rules for detecting the deviation from a stable process. The package also provides a web-based graphical user interface to help users conduct the analysis. 2025-03-25
r-webutils public Parses http request data in application/json, multipart/form-data, or application/x-www-form-urlencoded format. Includes example of hosting and parsing html form data in R using either 'httpuv' or 'Rhttpd'. 2025-03-25
r-websocket public Provides a 'WebSocket' client interface for R. 'WebSocket' is a protocol for low-overhead real-time communication: <https://en.wikipedia.org/wiki/WebSocket>. 2025-03-25
r-webp public Lossless webp images are 26% smaller in size compared to PNG. Lossy webp images are 25-34% smaller in size compared to JPEG. This package reads and writes webp images into a 3 (rgb) or 4 (rgba) channel bitmap array using conventions from the 'jpeg' and 'png' packages. 2025-03-25
r-wdm public Provides efficient implementations of weighted dependence measures and related asymptotic tests for independence. Implemented measures are the Pearson correlation, Spearman's rho, Kendall's tau, Blomqvist's beta, and Hoeffding's D; see, e.g., Nelsen (2006) <doi:10.1007/0-387-28678-0> and Hollander et al. (2015, ISBN:9780470387375). 2025-03-25
r-wcorr public Calculates Pearson, Spearman, polychoric, and polyserial correlation coefficients, in weighted or unweighted form. The package implements tetrachoric correlation as a special case of the polychoric and biserial correlation as a specific case of the polyserial. 2025-03-25
r-wbs public Provides efficient implementation of the Wild Binary Segmentation and Binary Segmentation algorithms for estimation of the number and locations of multiple change-points in the piecewise constant function plus Gaussian noise model. 2025-03-25
r-wavethresh public Performs 1, 2 and 3D real and complex-valued wavelet transforms, nondecimated transforms, wavelet packet transforms, nondecimated wavelet packet transforms, multiple wavelet transforms, complex-valued wavelet transforms, wavelet shrinkage for various kinds of data, locally stationary wavelet time series, nonstationary multiscale transfer function modeling, density estimation. 2025-03-25
r-waveslim public Basic wavelet routines for time series (1D), image (2D) and array (3D) analysis. The code provided here is based on wavelet methodology developed in Percival and Walden (2000); Gencay, Selcuk and Whitcher (2001); the dual-tree complex wavelet transform (DTCWT) from Kingsbury (1999, 2001) as implemented by Selesnick; and Hilbert wavelet pairs (Selesnick 2001, 2002). All figures in chapters 4-7 of GSW (2001) are reproducible using this package and R code available at the book website(s) below. 2025-03-25
r-wavelets public Contains functions for computing and plotting discrete wavelet transforms (DWT) and maximal overlap discrete wavelet transforms (MODWT), as well as their inverses. Additionally, it contains functionality for computing and plotting wavelet transform filters that are used in the above decompositions as well as multiresolution analyses. 2025-03-25
r-waffect public waffect (pronounced 'double-u affect' for 'weighted affectation') is a package to simulate phenotypic (case or control) datasets under a disease model H1 such that the total number of cases is constant across all the simulations (the constrain in the title). The package also makes it possible to generate phenotypes in the case of more than two classes, so that the number of phenotypes belonging to each class is constant across all the simulations. waffect is used to assess empirically the statistical power of Genome Wide Association studies. 2025-03-25
r-volesti public Provides an R interface for 'volesti' C++ package. 'volesti' computes estimations of volume of polytopes given by (i) a set of points, (ii) linear inequalities or (iii) Minkowski sum of segments (a.k.a. zonotopes). There are three algorithms for volume estimation as well as algorithms for sampling, rounding and rotating polytopes. Moreover, 'volesti' provides algorithms for estimating copulas useful in computational finance. Methods implemented in 'volesti' are described in A. Chalkis and V. Fisikopoulos (2022) <doi:10.32614/RJ-2021-077> and references therein. 2025-03-25
r-vnm public Provide tools for finding multiple-objective optimal designs for estimating the shape of dose-response, the ED50 (the dose producing an effect midway between the expected responses at the extreme doses) and the MED (the minimum effective dose level) for the 2,3,4-parameter logistic models and for evaluating its efficiencies for the three objectives. The acronym VNM stands for V-algorithm using Newton Raphson method to search multiple-objective optimal design. 2025-03-25
r-vlmc public Functions, Classes & Methods for estimation, prediction, and simulation (bootstrap) of Variable Length Markov Chain ('VLMC') Models. 2025-03-25
r-vlad public Contains functions to set up risk-adjusted quality control charts in health care. For the variable life adjusted display (VLAD) proposed by Lovegrove et al. (1997) <doi:10.1016/S0140-6736(97)06507-0> signaling rules derived in Wittenberg et al. (2018) <doi:10.1002/sim.7647> are implemented. Additionally, for the risk-adjusted cumulative sum chart based on log-likelihood ratio statistic introduced by Steiner et al. (2000) <doi:10.1093/biostatistics/1.4.441> average run length and control limits can be computed with fast and accurate Markov chain approximations developed in Knoth et al. (2019) <doi:10.1002/sim.8104>. 2025-03-25
r-vita public Implements the novel testing approach by Janitza et al.(2015) <http://nbn-resolving.de/urn/resolver.pl?urn=nbn:de:bvb:19-epub-25587-4> for the permutation variable importance measure in a random forest and the PIMP-algorithm by Altmann et al.(2010) <doi:10.1093/bioinformatics/btq134>. Janitza et al.(2015) <http://nbn-resolving.de/urn/resolver.pl?urn=nbn:de:bvb:19-epub-25587-4> do not use the "standard" permutation variable importance but the cross-validated permutation variable importance for the novel test approach. The cross-validated permutation variable importance is not based on the out-of-bag observations but uses a similar strategy which is inspired by the cross-validation procedure. The novel test approach can be applied for classification trees as well as for regression trees. However, the use of the novel testing approach has not been tested for regression trees so far, so this routine is meant for the expert user only and its current state is rather experimental. 2025-03-25

© 2025 Anaconda, Inc. All Rights Reserved. (v4.0.9) Legal | Privacy Policy