About Anaconda Help Download Anaconda

r / packages

Package Name Access Summary Updated
r-gdtools public Tools are provided to compute metrics of formatted strings and to check the availability of a font. Another set of functions is provided to support the collection of fonts from 'Google Fonts' in a cache. Their use is simple within 'R Markdown' documents and 'shiny' applications but also with graphic productions generated with the 'ggiraph', 'ragg' and 'svglite' packages or with tabular productions from the 'flextable' package. 2024-01-16
r-gdpc public Functions to compute the Generalized Dynamic Principal Components introduced in Peña and Yohai (2016) <DOI:10.1080/01621459.2015.1072542>. The implementation includes an automatic procedure proposed in Peña, Smucler and Yohai (2020) <DOI:10.18637/jss.v092.c02> for the identification of both the number of lags to be used in the generalized dynamic principal components as well as the number of components required for a given reconstruction accuracy. 2024-01-16
r-gcpm public Analyze the default risk of credit portfolios. Commonly known models, like CreditRisk+ or the CreditMetrics model are implemented in their very basic settings. The portfolio loss distribution can be achieved either by simulation or analytically in case of the classic CreditRisk+ model. Models are only implemented to respect losses caused by defaults, i.e. migration risk is not included. The package structure is kept flexible especially with respect to distributional assumptions in order to quantify the sensitivity of risk figures with respect to several assumptions. Therefore the package can be used to determine the credit risk of a given portfolio as well as to quantify model sensitivities. 2024-01-16
r-gckrig public Provides a variety of functions to analyze and model geostatistical count data with Gaussian copulas, including 1) data simulation and visualization; 2) correlation structure assessment (here also known as the Normal To Anything); 3) calculate multivariate normal rectangle probabilities; 4) likelihood inference and parallel prediction at predictive locations. Description of the method is available from: Han and DeOliveira (2018) <doi:10.18637/jss.v087.i13>. 2024-01-16
r-gaston public Manipulation of genetic data (SNPs). Computation of GRM and dominance matrix, LD, heritability with efficient algorithms for linear mixed model (AIREML). Dandine et al <doi:10.1159/000488519>. 2024-01-16
r-gcdnet public Implements a generalized coordinate descent (GCD) algorithm for computing the solution paths of the hybrid Huberized support vector machine (HHSVM) and its generalizations. Supported models include the (adaptive) LASSO and elastic net penalized least squares, logistic regression, HHSVM, squared hinge loss SVM and expectile regression. 2024-01-16
r-gcat public These are two-sample tests for categorical data utilizing similarity information among the categories. They are useful when there is underlying structure on the categories. 2024-01-16
r-gausscov public Given the standard linear model the traditional way of deciding whether to include the jth covariate is to apply the F-test to decide whether the corresponding beta coefficient is zero. The Gaussian covariate method is completely different. The question as to whether the beta coefficient is or is not zero is replaced by the question as to whether the covariate is better or worse than i.i.d. Gaussian noise. The P-value for the covariate is the probability that Gaussian noise is better. Surprisingly this can be given exactly and it is the same a the P-value for the classical model based on the F-distribution. The Gaussian covariate P-value is model free, it is the same for any data set. Using the idea it is possible to do covariate selection for a small number of covariates 25 by considering all subsets. Post selection inference causes no problems as the P-values hold whatever the data. The idea extends to stepwise regression again with exact probabilities. In the simplest version the only parameter is a specified cut-off P-value which can be interpreted as the probability of a false positive being included in the final selection. For more information see the web site below and the accompanying papers: L. Davies and L. Duembgen, "Covariate Selection Based on a Model-free Approach to Linear Regression with Exact Probabilities", 2022, <arxiv:2202.01553>. L. Davies, "Linear Regression, Covariate Selection and the Failure of Modelling", 2022, <arXiv:2112.08738>. 2024-01-16
r-gbm public An implementation of extensions to Freund and Schapire's AdaBoost algorithm and Friedman's gradient boosting machine. Includes regression methods for least squares, absolute loss, t-distribution loss, quantile regression, logistic, multinomial logistic, Poisson, Cox proportional hazards partial likelihood, AdaBoost exponential loss, Huberized hinge loss, and Learning to Rank measures (LambdaMart). Originally developed by Greg Ridgeway. 2024-01-16
r-gb public A collection of algorithms and functions for fitting data to a generalized lambda distribution via moment matching methods, and generalized bootstrapping. 2024-01-16
r-gaussianhmm1d public Inference, goodness-of-fit test, and prediction densities and intervals for univariate Gaussian Hidden Markov Models (HMM). The goodness-of-fit is based on a Cramer-von Mises statistic and uses parametric bootstrap to estimate the p-value. The description of the methodology is taken from Chapter 10.2 of Remillard (2013) <doi:10.1201/b14285>. 2024-01-16
r-gaupro public Fits a Gaussian process model to data. Gaussian processes are commonly used in computer experiments to fit an interpolating model. The model is stored as an 'R6' object and can be easily updated with new data. There are options to run in parallel, and 'Rcpp' has been used to speed up calculations. For more info about Gaussian process software, see Erickson et al. (2018) <doi:10.1016/j.ejor.2017.10.002>. 2024-01-16
r-gas public Simulate, estimate and forecast using univariate and multivariate GAS models as described in Ardia et al. (2019) <doi:10.18637/jss.v088.i06>. 2024-01-16
r-gamlss public Functions for fitting the Generalized Additive Models for Location Scale and Shape introduced by Rigby and Stasinopoulos (2005), <doi:10.1111/j.1467-9876.2005.00510.x>. The models use a distributional regression approach where all the parameters of the conditional distribution of the response variable are modelled using explanatory variables. 2024-01-16
r-fwildclusterboot public Implementation of fast algorithms for wild cluster bootstrap inference developed in 'Roodman et al' (2019, 'STATA' Journal, <doi:10.1177/1536867X19830877>) and 'MacKinnon et al' (2022), which makes it feasible to quickly calculate bootstrap test statistics based on a large number of bootstrap draws even for large samples. Multiple bootstrap types as described in 'MacKinnon, Nielsen & Webb' (2022) are supported. Further, 'multiway' clustering, regression weights, bootstrap weights, fixed effects and 'subcluster' bootstrapping are supported. Further, both restricted ('WCR') and unrestricted ('WCU') bootstrap are supported. Methods are provided for a variety of fitted models, including 'lm()', 'feols()' (from package 'fixest') and 'felm()' (from package 'lfe'). Additionally implements a 'heteroskedasticity-robust' ('HC1') wild bootstrap. Last, the package provides an R binding to 'WildBootTests.jl', which provides additional speed gains and functionality, including the 'WRE' bootstrap for instrumental variable models (based on models of type 'ivreg()' from package 'ivreg') and hypotheses with q > 1. 2024-01-16
r-gap public As first reported [Zhao, J. H. 2007. "gap: Genetic Analysis Package". J Stat Soft 23(8):1-18. <doi:10.18637/jss.v023.i08>], it is designed as an integrated package for genetic data analysis of both population and family data. Currently, it contains functions for sample size calculations of both population-based and family-based designs, probability of familial disease aggregation, kinship calculation, statistics in linkage analysis, and association analysis involving genetic markers including haplotype analysis with or without environmental covariates. Over years, the package has been developed in-between many projects hence also in line with the name (gap). 2024-01-16
r-gaselect public Provides a genetic algorithm for finding variable subsets in high dimensional data with high prediction performance. The genetic algorithm can use ordinary least squares (OLS) regression models or partial least squares (PLS) regression models to evaluate the prediction power of variable subsets. By supporting different cross-validation schemes, the user can fine-tune the tradeoff between speed and quality of the solution. 2024-01-16
r-gamlss.dist public A set of distributions which can be used for modelling the response variables in Generalized Additive Models for Location Scale and Shape, Rigby and Stasinopoulos (2005), <doi:10.1111/j.1467-9876.2005.00510.x>. The distributions can be continuous, discrete or mixed distributions. Extra distributions can be created, by transforming, any continuous distribution defined on the real line, to a distribution defined on ranges 0 to infinity or 0 to 1, by using a 'log' or a 'logit' transformation respectively. 2024-01-16
r-gammslice public Uses a slice sampling-based Markov chain Monte Carlo to conduct Bayesian fitting and inference for generalized additive mixed models. Generalized linear mixed models and generalized additive models are also handled as special cases of generalized additive mixed models. The methodology and software is described in Pham, T.H. and Wand, M.P. (2018). Australian and New Zealand Journal of Statistics, 60, 279-330 <DOI:10.1111/ANZS.12241>. 2024-01-16
r-gamlr public The gamma lasso algorithm provides regularization paths corresponding to a range of non-convex cost functions between L0 and L1 norms. As much as possible, usage for this package is analogous to that for the glmnet package (which does the same thing for penalization between L1 and L2 norms). For details see: Taddy (2017 JCGS), 'One-Step Estimator Paths for Concave Regularization', <arXiv:1308.5623>. 2024-01-16
r-ga public Flexible general-purpose toolbox implementing genetic algorithms (GAs) for stochastic optimisation. Binary, real-valued, and permutation representations are available to optimize a fitness function, i.e. a function provided by users depending on their objective function. Several genetic operators are available and can be combined to explore the best settings for the current task. Furthermore, users can define new genetic operators and easily evaluate their performances. Local search using general-purpose optimisation algorithms can be applied stochastically to exploit interesting regions. GAs can be run sequentially or in parallel, using an explicit master-slave parallelisation or a coarse-grain islands approach. 2024-01-16
r-gamesga public Finds adaptive strategies for sequential symmetric games using a genetic algorithm. Currently, any symmetric two by two matrix is allowed, and strategies can remember the history of an opponent's play from the previous three rounds of moves in iterated interactions between players. The genetic algorithm returns a list of adaptive strategies given payoffs, and the mean fitness of strategies in each generation. 2024-01-16
r-gam public Functions for fitting and working with generalized additive models, as described in chapter 7 of "Statistical Models in S" (Chambers and Hastie (eds), 1991), and "Generalized Additive Models" (Hastie and Tibshirani, 1990). 2024-01-16
r-frontier public Maximum Likelihood Estimation of Stochastic Frontier Production and Cost Functions. Two specifications are available: the error components specification with time-varying efficiencies (Battese and Coelli, 1992, <doi:10.1007/BF00158774>) and a model specification in which the firm effects are directly influenced by a number of variables (Battese and Coelli, 1995, <doi:10.1007/BF01205442>). 2024-01-16
r-gafit public A group of sample points are evaluated against a user-defined expression, the sample points are lists of parameters with values that may be substituted into that expression. The genetic algorithm attempts to make the result of the expression as low as possible (usually this would be the sum of residuals squared). 2024-01-16
r-gadag public Sparse large Directed Acyclic Graphs learning with a combination of a convex program and a tailored genetic algorithm (see Champion et al. (2017) <https://hal.archives-ouvertes.fr/hal-01172745v2/document>). 2024-01-16
r-fwsim public Simulates a population under the Fisher-Wright model (fixed or stochastic population size) with a one-step neutral mutation process (stepwise mutation model, logistic mutation model and exponential mutation model supported). The stochastic population sizes are random Poisson distributed and different kinds of population growth are supported. For the stepwise mutation model, it is possible to specify locus and direction specific mutation rate (in terms of upwards and downwards mutation rate). Intermediate generations can be saved in order to study e.g. drift. 2024-01-16
r-fuzzyranktests public Does fuzzy tests and confidence intervals (following Geyer and Meeden, Statistical Science, 2005, <doi:10.1214/088342305000000340>) for sign test and Wilcoxon signed rank and rank sum tests. 2024-01-16
r-frk public A tool for spatial/spatio-temporal modelling and prediction with large datasets. The approach models the field, and hence the covariance function, using a set of basis functions. This fixed-rank basis-function representation facilitates the modelling of big data, and the method naturally allows for non-stationary, anisotropic covariance functions. Discretisation of the spatial domain into so-called basic areal units (BAUs) facilitates the use of observations with varying support (i.e., both point-referenced and areal supports, potentially simultaneously), and prediction over arbitrary user-specified regions. `FRK` also supports inference over various manifolds, including the 2D plane and 3D sphere, and it provides helper functions to model, fit, predict, and plot with relative ease. Version 2.0.0 and above also supports the modelling of non-Gaussian data (e.g., Poisson, binomial, negative-binomial, gamma, and inverse-Gaussian) by employing a generalised linear mixed model (GLMM) framework. Zammit-Mangion and Cressie <doi:10.18637/jss.v098.i04> describe `FRK` in a Gaussian setting, and detail its use of basis functions and BAUs, while Sainsbury-Dale et al. <arXiv:2110.02507> describe `FRK` in a non-Gaussian setting; two vignettes are available that summarise these papers and provide additional examples. 2024-01-16
r-funitroots public Provides four addons for analyzing trends and unit roots in financial time series: (i) functions for the density and probability of the augmented Dickey-Fuller Test, (ii) functions for the density and probability of MacKinnon's unit root test statistics, (iii) reimplementations for the ADF and MacKinnon Test, and (iv) an 'urca' Unit Root Test Interface for Pfaff's unit root test suite. 2024-01-16
r-funchisq public Statistical hypothesis testing methods for inferring model-free functional dependency using asymptotic chi-squared or exact distributions. Functional test statistics are asymmetric and functionally optimal, unique from other related statistics. Tests in this package reveal evidence for causality based on the causality-by- functionality principle. They include asymptotic functional chi-squared tests (Zhang & Song 2013) <arXiv:1311.2707>, an adapted functional chi-squared test (Kumar & Song 2022) <doi:10.1093/bioinformatics/btac206>, and an exact functional test (Zhong & Song 2019) <doi:10.1109/TCBB.2018.2809743> (Nguyen et al. 2020) <doi:10.24963/ijcai.2020/372>. The normalized functional chi-squared test was used by Best Performer 'NMSUSongLab' in HPN-DREAM (DREAM8) Breast Cancer Network Inference Challenges (Hill et al. 2016) <doi:10.1038/nmeth.3773>. A function index (Zhong & Song 2019) <doi:10.1186/s12920-019-0565-9> (Kumar et al. 2018) <doi:10.1109/BIBM.2018.8621502> derived from the functional test statistic offers a new effect size measure for the strength of functional dependency, a better alternative to conditional entropy in many aspects. For continuous data, these tests offer an advantage over regression analysis when a parametric functional form cannot be assumed; for categorical data, they provide a novel means to assess directional dependency not possible with symmetrical Pearson's chi-squared or Fisher's exact tests. 2024-01-16
r-freealg public The free algebra in R with non-commuting indeterminates. Uses 'disordR' discipline (Hankin, 2022, <doi:10.48550/ARXIV.2210.03856>). To cite the package in publications please use Hankin (2022) <doi:10.48550/ARXIV.2211.04002>. 2024-01-16
r-fstcore public The 'fstlib' library provides multithreaded serialization of compressed data frames using the 'fst' format. The 'fst' format allows for random access of stored data and compression with the 'LZ4' and 'ZSTD' compressors. 2024-01-16
r-fst public Multithreaded serialization of compressed data frames using the 'fst' format. The 'fst' format allows for full random access of stored data and a wide range of compression settings using the LZ4 and ZSTD compressors. 2024-01-16
r-fsinteract public Performs fast detection of interactions in large-scale data using the method of random intersection trees introduced in Shah, R. D. and Meinshausen, N. (2014) <http://www.jmlr.org/papers/v15/shah14a.html>. The algorithm finds potentially high-order interactions in high-dimensional binary two-class classification data, without requiring lower order interactions to be informative. The search is particularly fast when the matrices of predictors are sparse. It can also be used to perform market basket analysis when supplied with a single binary data matrix. Here it will find collections of columns which for many rows contain all 1's. 2024-01-16
r-fselectorrcpp public 'Rcpp' (free of 'Java'/'Weka') implementation of 'FSelector' entropy-based feature selection algorithms based on an MDL discretization (Fayyad U. M., Irani K. B.: Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning. In 13'th International Joint Conference on Uncertainly in Artificial Intelligence (IJCAI93), pages 1022-1029, Chambery, France, 1993.) <https://www.ijcai.org/Proceedings/93-2/Papers/022.pdf> with a sparse matrix support. 2024-01-16
r-fromo public Fast, numerically robust computation of weighted moments via 'Rcpp'. Supports computation on vectors and matrices, and Monoidal append of moments. Moments and cumulants over running fixed length windows can be computed, as well as over time-based windows. Moment computations are via a generalization of Welford's method, as described by Bennett et. (2009) <doi:10.1109/CLUSTR.2009.5289161>. 2024-01-16
r-frlr public When fitting a set of linear regressions which have some same variables, we can separate the matrix and reduce the computation cost. This package aims to fit a set of repeated linear regressions faster. More details can be found in this blog Lijun Wang (2017) <https://stats.hohoweiya.xyz/regression/2017/09/26/An-R-Package-Fit-Repeated-Linear-Regressions/>. 2024-01-16
r-fmtr public Contains a set of functions that can be used to apply formats to data frames or vectors. The package aims to provide to functionality similar to that of SAS® formats. Formats are assigned to the format attribute on data frame columns. Then when the fdata() function is called, a new data frame is created with the column data formatted as specified. The package also contains a value() function to create a user-defined format, similar to a SAS® user-defined format. 2024-01-16
r-fractional public The main function of this package allows numerical vector objects to be displayed with their values in vulgar fractional form. This is convenient if patterns can then be more easily detected. In some cases replacing the components of a numeric vector by a rational approximation can also be expected to remove some component of round-off error. The main functions form a re-implementation of the functions 'fractions' and 'rational' of the MASS package, but using a radically improved programming strategy. 2024-01-16
r-fme public Provides functions to help in fitting models to data, to perform Monte Carlo, sensitivity and identifiability analysis. It is intended to work with models be written as a set of differential equations that are solved either by an integration routine from package 'deSolve', or a steady-state solver from package 'rootSolve'. However, the methods can also be used with other types of functions. 2024-01-16
r-fracdiff None Maximum likelihood estimation of the parameters of a fractionally differenced ARIMA(p,d,q) model (Haslett and Raftery, Appl.Statistics, 1989); including inference and basic methods. Some alternative algorithms to estimate "H". 2024-01-16
r-fpop public A dynamic programming algorithm for the fast segmentation of univariate signals into piecewise constant profiles. The 'fpop' package is a wrapper to a C++ implementation of the fpop (Functional Pruning Optimal Partioning) algorithm described in Maidstone et al. 2017 <doi:10.1007/s11222-016-9636-3>. The problem of detecting changepoints in an univariate sequence is formulated in terms of minimising the mean squared error over segmentations. The fpop algorithm exactly minimizes the mean squared error for a penalty linear in the number of changepoints. 2024-01-16
r-fmesher public Generate planar and spherical triangle meshes, compute finite element calculations for 1- and 2-dimensional flat and curved manifolds with associated basis function spaces, methods for lines and polygons, and transparent handling of coordinate reference systems and coordinate transformation, including 'sf' and 'sp' geometries. The core 'fmesher' library code was originally part of the 'INLA' package, and implements parts of "Triangulations and Applications" by Hjelle and Daehlen (2006) <doi:10.1007/3-540-33261-8>. 2024-01-16
r-fpeek public Tools to help text files importation. It can return the number of lines; print the first and last lines; convert encoding. Operations are made without reading the entire file before starting, resulting in good performances with large files. This package provides an alternative to a simple use of the 'head', 'tail', 'wc' and 'iconv' programs that are not always available on machine where R is installed. 2024-01-16
r-fourpno public Estimate Barton & Lord's (1981) <doi:10.1002/j.2333-8504.1981.tb01255.x> four parameter IRT model with lower and upper asymptotes using Bayesian formulation described by Culpepper (2016) <doi:10.1007/s11336-015-9477-6>. 2024-01-16
r-fourierin public Computes Fourier integrals of functions of one and two variables using the Fast Fourier transform. The Fourier transforms must be evaluated on a regular grid for fast evaluation. 2024-01-16
r-foreign None Reading and writing data stored by some versions of 'Epi Info', 'Minitab', 'S', 'SAS', 'SPSS', 'Stata', 'Systat', 'Weka', and for reading and writing some 'dBase' files. 2024-01-16
r-forecast None Methods and tools for displaying and analysing univariate time series forecasts including exponential smoothing via state space models and automatic ARIMA modelling. 2024-01-16
r-flexsurv public Flexible parametric models for time-to-event data, including the Royston-Parmar spline model, generalized gamma and generalized F distributions. Any user-defined parametric distribution can be fitted, given at least an R function defining the probability density or hazard. There are also tools for fitting and predicting from fully parametric multi-state models, based on either cause-specific hazards or mixture models. 2024-01-16

© 2025 Anaconda, Inc. All Rights Reserved. (v4.0.7) Legal | Privacy Policy