About Anaconda Help Download Anaconda

r / packages

Package Name Access Summary Updated
r-rngwell19937 public Long period linear random number generator WELL19937a by F. Panneton, P. L'Ecuyer and M. Matsumoto. The initialization algorithm allows to seed the generator with a numeric vector of an arbitrary length and uses MRG32k5a by P. L'Ecuyer to achieve good quality of the initialization. The output function may be set to provide numbers from the interval (0,1) with 53 (the default) or 32 random bits. WELL19937a is of similar type as Mersenne Twister and has the same period. WELL19937a is slightly slower than Mersenne Twister, but has better equidistribution and "bit-mixing" properties and faster recovery from states with prevailing zeros than Mersenne Twister. All WELL generators with orders 512, 1024, 19937 and 44497 can be found in randtoolbox package. 2025-04-22
r-rngwell public It is a dedicated package to WELL pseudo random generators, which were introduced in Panneton et al. (2006), ``Improved Long-Period Generators Based on Linear Recurrences Modulo 2'', see <doi:10.1145/1132973.1132974>. But this package is not intended to be used directly, you are strongly __encouraged__ to use the 'randtoolbox' package, which depends on this package. 2025-04-22
r-rngsetseed public A function setVectorSeed() is provided. Its argument is a numeric vector of an arbitrary nonzero length, whose components have integer values from [0, 2^32-1]. The input vector is transformed using AES (Advanced Encryption Standard) algorithm into an initial state of Mersenne-Twister random number generator. The function provides a better alternative to the R base function set.seed(), if the input vector is a single integer. Initializing a stream of random numbers with a vector is a convenient way to obtain several streams, each of which is identified by several integer indices. 2025-04-22
r-rnetcdf public An interface to the 'NetCDF' file formats designed by Unidata for efficient storage of array-oriented scientific data and descriptions. Most capabilities of 'NetCDF' version 4 are supported. Optional conversions of time units are enabled by 'UDUNITS' version 2, also from Unidata. 2025-04-22
r-rnetcarto public Provides functions to compute the modularity and modularity-related roles in networks. It is a wrapper around the rgraph library (Guimera & Amaral, 2005, <doi:10.1038/nature03288>). 2025-04-22
r-rmvp public A memory-efficient, visualize-enhanced, parallel-accelerated Genome-Wide Association Study (GWAS) tool. It can (1) effectively process large data, (2) rapidly evaluate population structure, (3) efficiently estimate variance components several algorithms, (4) implement parallel-accelerated association tests of markers three methods, (5) globally efficient design on GWAS process computing, (6) enhance visualization of related information. 'rMVP' contains three models GLM (Alkes Price (2006) <DOI:10.1038/ng1847>), MLM (Jianming Yu (2006) <DOI:10.1038/ng1702>) and FarmCPU (Xiaolei Liu (2016) <doi:10.1371/journal.pgen.1005767>); variance components estimation methods EMMAX (Hyunmin Kang (2008) <DOI:10.1534/genetics.107.080101>;), FaSTLMM (method: Christoph Lippert (2011) <DOI:10.1038/nmeth.1681>, R implementation from 'GAPIT2': You Tang and Xiaolei Liu (2016) <DOI:10.1371/journal.pone.0107684> and 'SUPER': Qishan Wang and Feng Tian (2014) <DOI:10.1371/journal.pone.0107684>), and HE regression (Xiang Zhou (2017) <DOI:10.1214/17-AOAS1052>). 2025-04-22
r-rmutil public A toolkit of functions for nonlinear regression and repeated measurements not to be used by itself but called by other Lindsey packages such as 'gnlm', 'stable', 'growth', 'repeated', and 'event' (available at <https://www.commanster.eu/rcode.html>). 2025-04-22
r-rmumps public Some basic features of MUMPS (Multifrontal Massively Parallel sparse direct Solver) are wrapped in a class whose methods can be used for sequentially solving a sparse linear system (symmetric or not) with one or many right hand sides (dense or sparse). There is a possibility to do separately symbolic analysis, LU (or LDL^t) factorization and system solving. Third part ordering libraries are included and can be used: PORD, METIS, SCOTCH. MUMPS method was first described in Amestoy et al. (2001) <doi:10.1137/S0895479899358194> and Amestoy et al. (2006) <doi:10.1016/j.parco.2005.07.004>. 2025-04-22
r-rmpfr public Arithmetic (via S4 classes and methods) for arbitrary precision floating point numbers, including transcendental ("special") functions. To this end, the package interfaces to the 'LGPL' licensed 'MPFR' (Multiple Precision Floating-Point Reliable) Library which itself is based on the 'GMP' (GNU Multiple Precision) Library. 2025-04-22
r-rmkdiscrete public Sundry discrete probability distributions and helper functions. 2025-04-22
r-rmixtcompio public Mixture Composer <https://github.com/modal-inria/MixtComp> is a project to build mixture models with heterogeneous data sets and partially missing data management. It includes models for real, categorical, counting, functional and ranking data. This package contains the minimal R interface of the C++ 'MixtComp' library. 2025-04-22
r-rmixmod public Interface of 'MIXMOD' software for supervised, unsupervised and semi-supervised classification with mixture modelling <doi: 10.18637/jss.v067.i06>. 2025-04-22
r-rmi public Provides mutual information estimators based on k-nearest neighbor estimators by A. Kraskov, et al. (2004) <doi:10.1103/PhysRevE.69.066138>, S. Gao, et al. (2015) <http://proceedings.mlr.press/v38/gao15.pdf> and local density estimators by W. Gao, et al. (2017) <doi:10.1109/ISIT.2017.8006749>. 2025-04-22
r-rmatio public Read and write 'Matlab' MAT files from R. The 'rmatio' package supports reading MAT version 4, MAT version 5 and MAT compressed version 5. The 'rmatio' package can write version 5 MAT files and version 5 files with variable compression. 2025-04-22
r-rmargint public Three robust marginal integration procedures for additive models based on local polynomial kernel smoothers. As a preliminary estimator of the multivariate function for the marginal integration procedure, a first approach uses local constant M-estimators, a second one uses local polynomials of order 1 over all the components of covariates, and the third one uses M-estimators based on local polynomials but only in the direction of interest. For this last approach, estimators of the derivatives of the additive functions can be obtained. All three procedures can compute predictions for points outside the training set if desired. See Boente and Martinez (2017) <doi:10.1007/s11749-016-0508-0> for details. 2025-04-22
r-rmalschains public An implementation of an algorithm family for continuous optimization called memetic algorithms with local search chains (MA-LS-Chains), as proposed in Molina et al. (2010) <doi:10.1162/evco.2010.18.1.18102> and Molina et al. (2011) <doi:10.1007/s00500-010-0647-2>. Rmalschains is further discussed in Bergmeir et al. (2016) <doi:10.18637/jss.v075.i04>. Memetic algorithms are hybridizations of genetic algorithms with local search methods. They are especially suited for continuous optimization. 2025-04-22
r-rltp public R interface to the 'LTP'-Cloud service for Natural Language Processing in Chinese (http://www.ltp-cloud.com/). 2025-04-22
r-rlt public Random forest with a variety of additional features for regression, classification and survival analysis. The features include: parallel computing with OpenMP, embedded model for selecting the splitting variable, based on Zhu, Zeng & Kosorok (2015) <doi:10.1080/01621459.2015.1036994>, subject weight, variable weight, tracking subjects used in each tree, etc. 2025-04-22
r-rlrsim public Rapid, simulation-based exact (restricted) likelihood ratio tests for testing the presence of variance components/nonparametric terms for models fit with nlme::lme(),lme4::lmer(), lmeTest::lmer(), gamm4::gamm4(), mgcv::gamm() and SemiPar::spm(). 2025-04-22
r-rlof public R parallel implementation of Local Outlier Factor(LOF) which uses multiple CPUs to significantly speed up the LOF computation for large datasets. (Note: The overall performance depends on the computers especially the number of the cores).It also supports multiple k values to be calculated in parallel, as well as various distance measures in addition to the default Euclidean distance. 2025-04-22
r-rlme public Estimates robust rank-based fixed effects and predicts robust random effects in two- and three- level random effects nested models. The methodology is described in Bilgic & Susmann (2013) <https://journal.r-project.org/archive/2013/RJ-2013-027/>. 2025-04-22
r-rlm public Robust fitting of linear model which can take response in matrix form. 2025-04-22
r-rlibeemd public An R interface for libeemd (Luukko, Helske, Räsänen, 2016) <doi:10.1007/s00180-015-0603-9>, a C library of highly efficient parallelizable functions for performing the ensemble empirical mode decomposition (EEMD), its complete variant (CEEMDAN), the regular empirical mode decomposition (EMD), and bivariate EMD (BEMD). Due to the possible portability issues CRAN version no longer supports OpenMP, you can install OpenMP-supported version from GitHub: <https://github.com/helske/Rlibeemd/>. 2025-04-22
r-rlecuyer public Provides an interface to the C implementation of the random number generator with multiple independent streams developed by L'Ecuyer et al (2002). The main purpose of this package is to enable the use of this random number generator in parallel R applications. 2025-04-22
r-rlda public Estimates the Bayesian LDA model for mixed-membership clustering based on different types of data (i.e., Multinomial, Bernoulli, and Binomial entries). Albuquerque, Valle and Li (2019) <doi:10.1016/j.knosys.2018.10.024>. 2025-04-22

© 2025 Anaconda, Inc. All Rights Reserved. (v4.2.2) Legal | Privacy Policy