About Anaconda Help Download Anaconda

krinsman / packages

Package Name Access Summary Updated
r-rdsg public A set of handy functions for Notre Dame Data Science Group 2025-03-25
mrbayes public Bayesian Inference of Phylogeny 2025-03-25
qqman public Draws Manhattan plot and QQ plot using plink assoc output. 2025-03-25
r-tda public Tools for the statistical analysis of persistent homology and for density clustering. For that, this package provides an R interface for the efficient algorithms of the C++ libraries 'GUDHI' <http://gudhi.gforge.inria.fr/>, 'Dionysus' <http://www.mrzv.org/software/dionysus/>, and 'PHAT' <https://bitbucket.org/phat-code/phat/>. This package also implements the methods in Fasy et al. (2014) <doi:10.1214/14-AOS1252> and Chazal et al. (2014) <doi:10.1145/2582112.2582128> for analyzing the statistical significance of persistent homology features. 2025-03-25
nbresuse public Simple Jupyter extension to show how much resources (RAM) your notebook is using 2025-03-25
r-pma public Performs Penalized Multivariate Analysis: a penalized matrix decomposition, sparse principal components analysis, and sparse canonical correlation analysis, described in the following papers: (1) Witten, Tibshirani and Hastie (2009) A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics 10(3):515-534. (2) Witten and Tibshirani (2009) Extensions of sparse canonical correlation analysis, with applications to genomic data. Statistical Applications in Genetics and Molecular Biology 8(1): Article 28. 2025-03-25
r-rafalib public A series of shortcuts for routine tasks originally developed by Rafael A. Irizarry to facilitate data exploration. 2025-03-25
r-cloudml public Interface to the Google Cloud Machine Learning Platform <https://cloud.google.com/ml-engine>, which provides cloud tools for training machine learning models. 2025-03-25
hg-git public Push and pull from git repositories using mercurial. 2025-03-25
r-hawkes public The package allows to simulate Hawkes process both in univariate and multivariate settings. It gives functions to compute different moments of the number of jumps of the process on a given interval, such as mean, variance or autocorrelation of process jumps on time intervals separated by a lag. 2025-03-25
jupyterlab-slurm public No Summary 2025-03-25
jupyterlab-latex public No Summary 2025-03-25
jupyterlab_katex-extension public No Summary 2025-03-25
jupyterlab-flake8 public No Summary 2025-03-25
jupyterlab-git public No Summary 2025-03-25
jupyterlab_geojson-extension public No Summary 2025-03-25
jupyterlab-github public No Summary 2025-03-25
jupyterlab_fasta-extension public No Summary 2025-03-25
jupyterlab-toc public No Summary 2025-03-25
jupyterlab-vim public No Summary 2025-03-25
jupyterlab-variableinspector public No Summary 2025-03-25
jupyterlab-hub public No Summary 2025-03-25
jupyterlab_html public No Summary 2025-03-25
jupyterlab-google-drive public No Summary 2025-03-25
jupyterlab_bokeh public No Summary 2025-03-25

© 2025 Anaconda, Inc. All Rights Reserved. (v4.1.0) Legal | Privacy Policy