r-dbitest
|
public |
A helper that tests 'DBI' back ends for conformity to the interface.
|
2025-03-25 |
r-clubsandwich
|
public |
Provides several cluster-robust variance estimators (i.e., sandwich estimators) for ordinary and weighted least squares linear regression models, including the bias-reduced linearization estimator introduced by Bell and McCaffrey (2002) <http://www.statcan.gc.ca/pub/12-001-x/2002002/article/9058-eng.pdf> and developed further by Pustejovsky and Tipton (2017) <DOI:10.1080/07350015.2016.1247004>. The package includes functions for estimating the variance- covariance matrix and for testing single- and multiple- contrast hypotheses based on Wald test statistics. Tests of single regression coefficients use Satterthwaite or saddle-point corrections. Tests of multiple- contrast hypotheses use an approximation to Hotelling's T-squared distribution. Methods are provided for a variety of fitted models, including lm() and mlm objects, glm(), ivreg (from package 'AER'), plm() (from package 'plm'), gls() and lme() (from 'nlme'), robu() (from 'robumeta'), and rma.uni() and rma.mv() (from 'metafor').
|
2025-03-25 |
r-cliapp
|
public |
Create rich command line applications, with colors, headings, lists, alerts, progress bars, etc. It uses CSS for custom themes.
|
2025-03-25 |
r-cccd
|
public |
Class Cover Catch Digraphs, neighborhood graphs, and relatives.
|
2025-03-25 |
r-bsda
|
public |
Data sets for book "Basic Statistics and Data Analysis" by Larry J. Kitchens.
|
2025-03-25 |
r-bridgesampling
|
public |
Provides functions for estimating marginal likelihoods, Bayes factors, posterior model probabilities, and normalizing constants in general, via different versions of bridge sampling (Meng & Wong, 1996, <http://www3.stat.sinica.edu.tw/statistica/j6n4/j6n43/j6n43.htm>).
|
2025-03-25 |
r-bradleyterry2
|
public |
Specify and fit the Bradley-Terry model, including structured versions in which the parameters are related to explanatory variables through a linear predictor and versions with contest-specific effects, such as a home advantage.
|
2025-03-25 |
r-bookdown
|
public |
Output formats and utilities for authoring books and technical documents with R Markdown.
|
2025-03-25 |
r-blme
|
public |
Maximum a posteriori estimation for linear and generalized linear mixed-effects models in a Bayesian setting. Extends 'lme4' by Douglas Bates, Martin Maechler, Ben Bolker, and Steve Walker.
|
2025-03-25 |
r-agd
|
public |
Tools for the analysis of growth data: to extract an LMS table from a gamlss object, to calculate the standard deviation scores and its inverse, and to superpose two wormplots from different models. The package contains a some varieties of reference tables, especially for The Netherlands.
|
2025-03-25 |
r-wskm
|
public |
Entropy weighted k-means (ewkm) is a weighted subspace clustering algorithm that is well suited to very high dimensional data. Weights are calculated as the importance of a variable with regard to cluster membership. The two-level variable weighting clustering algorithm tw-k-means (twkm) introduces two types of weights, the weights on individual variables and the weights on variable groups, and they are calculated during the clustering process. The feature group weighted k-means (fgkm) extends this concept by grouping features and weighting the group in addition to weighting individual features.
|
2025-03-25 |
r-spatstat
|
public |
Comprehensive open-source toolbox for analysing Spatial Point Patterns. Focused mainly on two-dimensional point patterns, including multitype/marked points, in any spatial region. Also supports three-dimensional point patterns, space-time point patterns in any number of dimensions, point patterns on a linear network, and patterns of other geometrical objects. Supports spatial covariate data such as pixel images. Contains over 2000 functions for plotting spatial data, exploratory data analysis, model-fitting, simulation, spatial sampling, model diagnostics, and formal inference. Data types include point patterns, line segment patterns, spatial windows, pixel images, tessellations, and linear networks. Exploratory methods include quadrat counts, K-functions and their simulation envelopes, nearest neighbour distance and empty space statistics, Fry plots, pair correlation function, kernel smoothed intensity, relative risk estimation with cross-validated bandwidth selection, mark correlation functions, segregation indices, mark dependence diagnostics, and kernel estimates of covariate effects. Formal hypothesis tests of random pattern (chi-squared, Kolmogorov-Smirnov, Monte Carlo, Diggle-Cressie-Loosmore-Ford, Dao-Genton, two-stage Monte Carlo) and tests for covariate effects (Cox-Berman-Waller-Lawson, Kolmogorov-Smirnov, ANOVA) are also supported. Parametric models can be fitted to point pattern data using the functions ppm(), kppm(), slrm(), dppm() similar to glm(). Types of models include Poisson, Gibbs and Cox point processes, Neyman-Scott cluster processes, and determinantal point processes. Models may involve dependence on covariates, inter-point interaction, cluster formation and dependence on marks. Models are fitted by maximum likelihood, logistic regression, minimum contrast, and composite likelihood methods. A model can be fitted to a list of point patterns (replicated point pattern data) using the function mppm(). The model can include random effects and fixed effects depending on the experimental design, in addition to all the features listed above. Fitted point process models can be simulated, automatically. Formal hypothesis tests of a fitted model are supported (likelihood ratio test, analysis of deviance, Monte Carlo tests) along with basic tools for model selection (stepwise(), AIC()) and variable selection (sdr). Tools for validating the fitted model include simulation envelopes, residuals, residual plots and Q-Q plots, leverage and influence diagnostics, partial residuals, and added variable plots.
|
2025-03-25 |
r-spamm
|
public |
Inference based on mixed-effect models, including generalized linear mixed models with spatial correlations and models with non-Gaussian random effects (e.g., Beta). Both classical geostatistical models, and Markov random field models on irregular grids, can be fitted. Variation in residual variance (heteroscedasticity) can itself be represented by a generalized linear mixed model. Various approximations of likelihood or restricted likelihood are implemented, in particular h-likelihood (Lee and Nelder 2001 <doi:10.1093/biomet/88.4.987>) and Laplace approximation.
|
2025-03-25 |
r-rem
|
public |
Calculate endogenous network effects in event sequences and fit relational event models (REM): Using network event sequences (where each tie between a sender and a target in a network is time-stamped), REMs can measure how networks form and evolve over time. Endogenous patterns such as popularity effects, inertia, similarities, cycles or triads can be calculated and analyzed over time.
|
2025-03-25 |
r-profvis
|
public |
Interactive visualizations for profiling R code.
|
2025-03-25 |
r-pdfcluster
|
public |
Cluster analysis via nonparametric density estimation is performed. Operationally, the kernel method is used throughout to estimate the density. Diagnostics methods for evaluating the quality of the clustering are available. The package includes also a routine to estimate the probability density function obtained by the kernel method, given a set of data with arbitrary dimensions.
|
2025-03-25 |
r-paramhelpers
|
public |
Functions for parameter descriptions and operations in black-box optimization, tuning and machine learning. Parameters can be described (type, constraints, defaults, etc.), combined to parameter sets and can in general be programmed on. A useful OptPath object (archive) to log function evaluations is also provided.
|
2025-03-25 |
r-netrankr
|
public |
Implements methods for centrality related analyses of networks. While the package includes the possibility to build more than 20 indices, its main focus lies on index-free assessment of centrality via partial rankings obtained by neighborhood-inclusion or positional dominance. These partial rankings can be analyzed with different methods, including probabilistic methods like computing expected node ranks and relative rank probabilities (how likely is it that a node is more central than another?). The methodology is described in depth in the vignettes and in Schoch (2018) <doi:10.1016/j.socnet.2017.12.003>.
|
2025-03-25 |
r-msm
|
public |
Functions for fitting continuous-time Markov and hidden Markov multi-state models to longitudinal data. Designed for processes observed at arbitrary times in continuous time (panel data) but some other observation schemes are supported. Both Markov transition rates and the hidden Markov output process can be modelled in terms of covariates, which may be constant or piecewise-constant in time.
|
2025-03-25 |
r-memisc
|
public |
An infrastructure for the management of survey data including value labels, definable missing values, recoding of variables, production of code books, and import of (subsets of) 'SPSS' and 'Stata' files is provided. Further, the package allows to produce tables and data frames of arbitrary descriptive statistics and (almost) publication-ready tables of regression model estimates, which can be exported to 'LaTeX' and HTML.
|
2025-03-25 |
r-mcmcglmm
|
public |
MCMC Generalised Linear Mixed Models.
|
2025-03-25 |
r-lfe
|
public |
Transforms away factors with many levels prior to doing an OLS. Useful for estimating linear models with multiple group fixed effects, and for estimating linear models which uses factors with many levels as pure control variables. Includes support for instrumental variables, conditional F statistics for weak instruments, robust and multi-way clustered standard errors, as well as limited mobility bias correction.
|
2025-03-25 |
r-juliacall
|
public |
Provides an R interface to 'Julia', which is a high-level, high-performance dynamic programming language for numerical computing, see <https://julialang.org/> for more information. It provides a high-level interface as well as a low-level interface. Using the high level interface, you could call any 'Julia' function just like any R function with automatic type conversion. Using the low level interface, you could deal with C-level SEXP directly while enjoying the convenience of using a high-level programming language like 'Julia'.
|
2025-03-25 |
r-interp
|
public |
Bivariate data interpolation on regular and irregular grids, either linear or using splines are the main part of this package. It is intended to provide FOSS replacement functions for the ACM licensed akima::interp and tripack::tri.mesh functions. Currently the piecewise linear interpolation part of akima::interp (and also akima::interpp) is implemented in interp::interp, this corresponds to the call akima::interp(..., linear=TRUE) which is the default setting and covers most of akima::interp use cases in depending packages. A re-implementation of Akimas spline interpolation (akima::interp(..., linear=FALSE)) is currently under development and will complete this package in a later version. Estimators for partial derivatives are already available, these are a prerequisite for the spline interpolation. The basic part is currently a GPLed triangulation algorithm (sweep hull algorithm by David Sinclair) providing the starting point for the piecewise linear interpolator. As side effect this algorithm is also used to provide replacements for the basic functions of the tripack package which also suffer from the ACM restrictions. All functions are designed to be backward compatible with their akima / tripack counterparts.
|
2025-03-25 |
r-geor
|
public |
Geostatistical analysis including traditional, likelihood-based and Bayesian methods.
|
2025-03-25 |
r-etm
|
public |
The etm (empirical transition matrix) package permits to estimate the matrix of transition probabilities for any time-inhomogeneous multistate model with finite state space using the Aalen-Johansen estimator. Functions for data preparation and for displaying are also included (Allignol et al., 2011 <doi:10.18637/jss.v038.i04>). Functionals of the Aalen-Johansen estimator, e.g., excess length-of-stay in an intermediate state, can also be computed (Allignol et al. 2011 <doi:10.1007/s00180-010-0200-x>).
|
2025-03-25 |
r-estimatr
|
public |
Fast procedures for small set of commonly-used, design-appropriate estimators with robust standard errors and confidence intervals. Includes estimators for linear regression, instrumental variables regression, difference-in-means, Horvitz-Thompson estimation, and regression improving precision of experimental estimates by interacting treatment with centered pre-treatment covariates introduced by Lin (2013) <doi:10.1214/12-AOAS583>.
|
2025-03-25 |
r-dppackage
|
public |
Functions to perform inference via simulation from the posterior distributions for Bayesian nonparametric and semiparametric models. Although the name of the package was motivated by the Dirichlet Process prior, the package considers and will consider other priors on functional spaces. So far, DPpackage includes models considering Dirichlet Processes, Dependent Dirichlet Processes, Dependent Poisson- Dirichlet Processes, Hierarchical Dirichlet Processes, Polya Trees, Linear Dependent Tailfree Processes, Mixtures of Triangular distributions, Random Bernstein polynomials priors and Dependent Bernstein Polynomials. The package also includes models considering Penalized B-Splines. Includes semiparametric models for marginal and conditional density estimation, ROC curve analysis, interval censored data, binary regression models, generalized linear mixed models, IRT type models, and generalized additive models. Also contains functions to compute Pseudo-Bayes factors for model comparison, and to elicitate the precision parameter of the Dirichlet Process. To maximize computational efficiency, the actual sampling for each model is done in compiled FORTRAN. The functions return objects which can be subsequently analyzed with functions provided in the 'coda' package.
|
2025-03-25 |
r-desctools
|
public |
A collection of miscellaneous basic statistic functions and convenience wrappers for efficiently describing data. The author's intention was to create a toolbox, which facilitates the (notoriously time consuming) first descriptive tasks in data analysis, consisting of calculating descriptive statistics, drawing graphical summaries and reporting the results. The package contains furthermore functions to produce documents using MS Word (or PowerPoint) and functions to import data from Excel. Many of the included functions can be found scattered in other packages and other sources written partly by Titans of R. The reason for collecting them here, was primarily to have them consolidated in ONE instead of dozens of packages (which themselves might depend on other packages which are not needed at all), and to provide a common and consistent interface as far as function and arguments naming, NA handling, recycling rules etc. are concerned. Google style guides were used as naming rules (in absence of convincing alternatives). The 'camel style' was consequently applied to functions borrowed from contributed R packages as well.
|
2025-03-25 |
r-coxme
|
public |
Cox proportional hazards models containing Gaussian random effects, also known as frailty models.
|
2025-03-25 |
r-cobs
|
public |
Qualitatively Constrained (Regression) Smoothing Splines via Linear Programming and Sparse Matrices.
|
2025-03-25 |
r-cmprsk
|
public |
Estimation, testing and regression modeling of subdistribution functions in competing risks, as described in Gray (1988), A class of K-sample tests for comparing the cumulative incidence of a competing risk, Ann. Stat. 16:1141-1154, and Fine JP and Gray RJ (1999), A proportional hazards model for the subdistribution of a competing risk, JASA, 94:496-509.
|
2025-03-25 |
r-cdm
|
public |
Functions for cognitive diagnosis modeling and multidimensional item response modeling for dichotomous and polytomous item responses. This package enables the estimation of the DINA and DINO model (Junker & Sijtsma, 2001, <doi:10.1177/01466210122032064>), the multiple group (polytomous) GDINA model (de la Torre, 2011, <doi:10.1007/s11336-011-9207-7>), the multiple choice DINA model (de la Torre, 2009, <doi:10.1177/0146621608320523>), the general diagnostic model (GDM; von Davier, 2008, <doi:10.1348/000711007X193957>), the structured latent class model (SLCA; Formann, 1992, <doi:10.1080/01621459.1992.10475229>) and regularized latent class analysis (Chen, Li, Liu, & Ying, 2017, <doi:10.1007/s11336-016-9545-6>). See George, Robitzsch, Kiefer, Gross, and Uenlue (2017) <doi:10.18637/jss.v074.i02> for further details on estimation and the package structure. For tutorials on how to use the CDM package see George and Robitzsch (2015, <doi:10.20982/tqmp.11.3.p189>) as well as Ravand and Robitzsch (2015).
|
2025-03-25 |
r-c50
|
public |
C5.0 decision trees and rule-based models for pattern recognition that extend the work of Quinlan (1993, ISBN:1-55860-238-0).
|
2025-03-25 |
r-bma
|
public |
Package for Bayesian model averaging and variable selection for linear models, generalized linear models and survival models (cox regression).
|
2025-03-25 |
r-bench
|
public |
Tools to accurately benchmark and analyze execution times for R expressions.
|
2025-03-25 |
r-zipcode
|
public |
This package contains a database of city, state, latitude, and longitude information for U.S. ZIP codes from the CivicSpace Database (August 2004) augmented by Daniel Coven's federalgovernmentzipcodes.us web site (updated January 22, 2012). Previous versions of this package (before 1.0) were based solely on the CivicSpace data, so an original version of the CivicSpace database is also included.
|
2025-03-25 |
r-wesanderson
|
public |
Palettes generated mostly from 'Wes Anderson' movies.
|
2025-03-25 |
r-vgamdata
|
public |
Data sets to accompany the VGAM package and the book "Vector Generalized Linear and Additive Models: With an Implementation in R" (Yee, 2015) <DOI:10.1007/978-1-4939-2818-7>. These are used to illustrate vector generalized linear and additive models (VGLMs/VGAMs), and associated models (Reduced-Rank VGLMs, Quadratic RR-VGLMs, Row-Column Interaction Models, and constrained and unconstrained ordination models in ecology).
|
2025-03-25 |
r-venneuler
|
public |
Calculates and displays Venn and Euler Diagrams
|
2025-03-25 |
r-variables
|
public |
Abstract descriptions of (yet) unobserved variables.
|
2025-03-25 |
r-unitizer
|
public |
Simplifies regression tests by comparing objects produced by test code with earlier versions of those same objects. If objects are unchanged the tests pass, otherwise execution stops with error details. If in interactive mode, tests can be reviewed through the provided interactive environment.
|
2025-03-25 |
r-truncdist
|
public |
A collection of tools to evaluate probability density functions, cumulative distribution functions, quantile functions and random numbers for truncated random variables. These functions are provided to also compute the expected value and variance. Nadarajah and Kotz (2006) developed most of the functions. QQ plots can be produced. All the probability functions in the stats, stats4 and evd packages are automatically available for truncation..
|
2025-03-25 |
r-tframe
|
public |
A kernel of functions for programming time series methods in a way that is relatively independently of the representation of time. Also provides plotting, time windowing, and some other utility functions which are specifically intended for time series. See the Guide distributed as a vignette, or ?tframe.Intro for more details. (User utilities are in package tfplot.)
|
2025-03-25 |
r-tfplot
|
public |
Utilities for simple manipulation and quick plotting of time series data. These utilities use the tframe package which provides a programming kernel for time series. Extensions to tframe provided in tframePlus can also be used. See the Guide vignette for examples.
|
2025-03-25 |
r-texreg
|
public |
Converts coefficients, standard errors, significance stars, and goodness-of-fit statistics of statistical models into LaTeX tables or HTML tables/MS Word documents or to nicely formatted screen output for the R console for easy model comparison. A list of several models can be combined in a single table. The output is highly customizable. New model types can be easily implemented.
|
2025-03-25 |
r-tensor
|
public |
The tensor product of two arrays is notionally an outer product of the arrays collapsed in specific extents by summing along the appropriate diagonals.
|
2025-03-25 |
r-tcltk2
|
public |
A series of additional Tcl commands and Tk widgets with style and various functions (under Windows: DDE exchange, access to the registry and icon manipulation) to supplement the tcltk package
|
2025-03-25 |
r-sylly.en
|
public |
Adds support for the English language to the 'sylly' package. Due to some restrictions on CRAN, the full package sources are only available from the project homepage. To ask for help, report bugs, suggest feature improvements, or discuss the global development of the package, please consider subscribing to the koRpus-dev mailing list (<http://korpusml.reaktanz.de>).
|
2025-03-25 |
r-sylly
|
public |
Provides the hyphenation algorithm used for 'TeX'/'LaTeX' and similar software, as proposed by Liang (1983, <https://tug.org/docs/liang/>). Mainly contains the function hyphen() to be used for hyphenation/syllable counting of text objects. It was originally developed for and part of the 'koRpus' package, but later released as a separate package so it's lighter to have this particular functionality available for other packages. Support for various languages needs be added on-the-fly or by plugin packages (<https://undocumeantit.github.io/repos>); this package does not include any language specific data. Due to some restrictions on CRAN, the full package sources are only available from the project homepage. To ask for help, report bugs, request features, or discuss the development of the package, please subscribe to the koRpus-dev mailing list (<http://korpusml.reaktanz.de>).
|
2025-03-25 |