About Anaconda Help Download Anaconda

f30a78ec8 / packages

Package Name Access Summary Updated
r-heatmaply public Create interactive cluster 'heatmaps' that can be saved as a stand- alone HTML file, embedded in 'R Markdown' documents or in a 'Shiny' app, and available in the 'RStudio' viewer pane. Hover the mouse pointer over a cell to show details or drag a rectangle to zoom. A 'heatmap' is a popular graphical method for visualizing high-dimensional data, in which a table of numbers are encoded as a grid of colored cells. The rows and columns of the matrix are ordered to highlight patterns and are often accompanied by 'dendrograms'. 'Heatmaps' are used in many fields for visualizing observations, correlations, missing values patterns, and more. Interactive 'heatmaps' allow the inspection of specific value by hovering the mouse over a cell, as well as zooming into a region of the 'heatmap' by dragging a rectangle around the relevant area. This work is based on the 'ggplot2' and 'plotly.js' engine. It produces similar 'heatmaps' as 'heatmap.2' or 'd3heatmap', with the advantage of speed ('plotly.js' is able to handle larger size matrix), the ability to zoom from the 'dendrogram' panes, and the placing of factor variables in the sides of the 'heatmap'. 2025-03-25
r-gmailr public An interface to the Gmail RESTful API. Allows access to your Gmail messages, threads, drafts and labels. 2025-03-25
r-gistr public Work with 'GitHub' 'gists' from 'R' (e.g., <http://en.wikipedia.org/wiki/GitHub#Gist>, <https://help.github.com/articles/about-gists/>). A 'gist' is simply one or more files with code/text/images/etc. This package allows the user to create new 'gists', update 'gists' with new files, rename files, delete files, get and delete 'gists', star and 'un-star' 'gists', fork 'gists', open a 'gist' in your default browser, get embed code for a 'gist', list 'gist' 'commits', and get rate limit information when 'authenticated'. Some requests require authentication and some do not. 'Gists' website: <https://gist.github.com/>. 2025-03-25
r-gender public Encodes gender based on names and dates of birth using historical datasets. By using these datasets instead of lists of male and female names, this package is able to more accurately guess the gender of a name, and it is able to report the probability that a name was male or female. 2025-03-25
r-foghorn public The CRAN check results in your R terminal. 2025-03-25
r-cyclestreets public An interface to the cycle routing/data services provided by 'CycleStreets', a not-for-profit social enterprise and advocacy organisation. The application programming interfaces (APIs) provided by 'CycleStreets' are documented at (<https://www.cyclestreets.net/api/>). The focus of this package is the journey planning API, which aims to emulate the routes taken by a knowledgeable cyclist. An innovative feature of the routing service of its provision of fastest, quietest and balanced profiles. These represent routes taken to minimise time, avoid traffic and compromise between the two, respectively. 2025-03-25
r-clusterses public Calculate p-values and confidence intervals using cluster-adjusted t-statistics (based on Ibragimov and Muller (2010) <DOI:10.1198/jbes.2009.08046>, pairs cluster bootstrapped t-statistics, and wild cluster bootstrapped t-statistics (the latter two techniques based on Cameron, Gelbach, and Miller (2008) <DOI:10.1162/rest.90.3.414>. Procedures are included for use with GLM, ivreg, plm (pooling or fixed effects), and mlogit models. 2025-03-25
r-brms public Fit Bayesian generalized (non-)linear multivariate multilevel models using 'Stan' for full Bayesian inference. A wide range of distributions and link functions are supported, allowing users to fit -- among others -- linear, robust linear, count data, survival, response times, ordinal, zero-inflated, hurdle, and even self-defined mixture models all in a multilevel context. Further modeling options include non-linear and smooth terms, auto-correlation structures, censored data, meta-analytic standard errors, and quite a few more. In addition, all parameters of the response distribution can be predicted in order to perform distributional regression. Prior specifications are flexible and explicitly encourage users to apply prior distributions that actually reflect their beliefs. Model fit can easily be assessed and compared with posterior predictive checks and leave-one-out cross-validation. References: Bürkner (2017) <doi:10.18637/jss.v080.i01>; Carpenter et al. (2017) <doi:10.18637/jss.v076.i01>. 2025-03-25
r-base64 public Compatibility wrapper to replace the orphaned package by Romain Francois. New applications should use the 'openssl' or 'base64enc' package instead. 2025-03-25
r-aws.s3 public A simple client package for the Amazon Web Services ('AWS') Simple Storage Service ('S3') 'REST' 'API' <https://aws.amazon.com/s3/>. 2025-03-25
r-acs public Provides a general toolkit for downloading, managing, analyzing, and presenting data from the U.S. Census (<https://www.census.gov/data/developers/data-sets.html>), including SF1 (Decennial short-form), SF3 (Decennial long-form), and the American Community Survey (ACS). Confidence intervals provided with ACS data are converted to standard errors to be bundled with estimates in complex acs objects. Package provides new methods to conduct standard operations on acs objects and present/plot data in statistically appropriate ways. 2025-03-25
r-vdiffr public An extension to the 'testthat' package that makes it easy to add graphical unit tests. It provides a Shiny application to manage the test cases. 2025-03-25
r-rstanarm public Estimates previously compiled regression models using the 'rstan' package, which provides the R interface to the Stan C++ library for Bayesian estimation. Users specify models via the customary R syntax with a formula and data.frame plus some additional arguments for priors. 2025-03-25
r-gergm public Estimation and diagnosis of the convergence of Generalized Exponential Random Graph Models via Gibbs sampling or Metropolis Hastings with exponential down weighting. 2025-03-25
r-mmgraphr public Produces parallel coordinate plots of probability transition matrices from Markov, hidden Markov, and mixture transition distribution models. 2025-03-25
r-micemd public Addons for the 'mice' package to perform multiple imputation using chained equations with two-level data. Includes imputation methods dedicated to sporadically and systematically missing values. Imputation of continuous, binary or count variables are available. Following the recommendations of Audigier, V. et al (2018) <doi:10.1214/18-STS646>, the choice of the imputation method for each variable can be facilitated by a default choice tuned according to the structure of the incomplete dataset. Allows parallel calculation and overimputation for 'mice'. 2025-03-25
r-heplots public Provides HE plot and other functions for visualizing hypothesis tests in multivariate linear models. HE plots represent sums-of-squares-and- products matrices for linear hypotheses and for error using ellipses (in two dimensions) and ellipsoids (in three dimensions). The related 'candisc' package provides visualizations in a reduced-rank canonical discriminant space when there are more than a few response variables. 2025-03-25
r-ggeffects public Compute marginal effects from statistical models and returns the result as tidy data frames. These data frames are ready to use with the 'ggplot2'-package. Marginal effects can be calculated for many different models. Interaction terms, splines and polynomial terms are also supported. The main functions are ggpredict(), ggemmeans() and ggeffect(). There is a generic plot()-method to plot the results using 'ggplot2'. 2025-03-25
r-caliberrfimpute public Functions to impute using Random Forest under Full Conditional Specifications (Multivariate Imputation by Chained Equations). The CALIBER programme is funded by the Wellcome Trust (086091/Z/08/Z) and the National Institute for Health Research (NIHR) under its Programme Grants for Applied Research programme (RP-PG-0407-10314). The author is supported by a Wellcome Trust Clinical Research Training Fellowship (0938/30/Z/10/Z). 2025-03-25
r-alr4 public Datasets to Accompany S. Weisberg (2014, ISBN: 978-1-118-38608-8), "Applied Linear Regression," 4th edition. Many data files in this package are included in the `alr3` package as well, so only one of them should be used. 2025-03-25
r-alr3 public Data files and a few functions used in the textbook S. Weisberg (2005), 'Applied Linear Regression,' 3rd edition, Wiley are presented. This package depends on the car package. Many functions formerly in alr3 have been renamed and now reside in car. Data files have been lightly modified to make some data columns row labels. Many of these files are also in the newer alr4 package. 2025-03-25
r-afex public Convenience functions for analyzing factorial experiments using ANOVA or mixed models. aov_ez(), aov_car(), and aov_4() allow specification of between, within (i.e., repeated-measures), or mixed (i.e., split-plot) ANOVAs for data in long format (i.e., one observation per row), automatically aggregating multiple observations per individual and cell of the design. mixed() fits mixed models using lme4::lmer() and computes p-values for all fixed effects using either Kenward-Roger or Satterthwaite approximation for degrees of freedom (LMM only), parametric bootstrap (LMMs and GLMMs), or likelihood ratio tests (LMMs and GLMMs). afex_plot() provides a high-level interface for interaction or one-way plots using ggplot2, combining raw data and model estimates. afex uses type 3 sums of squares as default (imitating commercial statistical software). 2025-03-25
r-miceadds public Contains functions for multiple imputation which complements existing functionality in R. In particular, several imputation methods for the mice package (van Buuren & Groothuis-Oudshoorn, 2011, <doi:10.18637/jss.v045.i03>) are included. Main features of the miceadds package include plausible value imputation (Mislevy, 1991, <doi:10.1007/BF02294457>), multilevel imputation for variables at any level or with any number of hierarchical and non-hierarchical levels (Grund, Luedtke & Robitzsch, 2018, <doi:10.1177/1094428117703686>; van Buuren, 2018, Ch.7, <doi:10.1201/9780429492259>), imputation using partial least squares (PLS) for high dimensional predictors (Robitzsch, Pham & Yanagida, 2016), nested multiple imputation (Rubin, 2003, <doi:10.1111/1467-9574.00217>) and substantive model compatible imputation (Bartlett et al., 2015, <doi:10.1177/0962280214521348>). 2025-03-25
r-logistf public Fit a logistic regression model using Firth's bias reduction method, equivalent to penalization of the log-likelihood by the Jeffreys prior. Confidence intervals for regression coefficients can be computed by penalized profile likelihood. Firth's method was proposed as ideal solution to the problem of separation in logistic regression. If needed, the bias reduction can be turned off such that ordinary maximum likelihood logistic regression is obtained. 2025-03-25
r-dendser public Re-arranges a dendrogram to optimize visualisation-based cost functions 2025-03-25

© 2025 Anaconda, Inc. All Rights Reserved. (v4.2.0) Legal | Privacy Policy