CMD + K

r-glmnet

Community

Extremely efficient procedures for fitting the entire lasso or elastic-net regularization path for linear regression, logistic and multinomial regression models, Poisson regression, Cox model, multiple-response Gaussian, and the grouped multinomial regression; see <doi:10.18637/jss.v033.i01> and <doi:10.18637/jss.v039.i05>. There are two new and important additions. The family argument can be a GLM family object, which opens the door to any programmed family (<doi:10.18637/jss.v106.i01>). This comes with a modest computational cost, so when the built-in families suffice, they should be used instead. The other novelty is the relax option, which refits each of the active sets in the path unpenalized. The algorithm uses cyclical coordinate descent in a path-wise fashion, as described in the papers cited.

Installation

To install this package, run one of the following:

Installation commands are not available for this package.

Usage Tracking

0 / 8 versions selected
Downloads (Last 6 months): 0

About

Summary

Extremely efficient procedures for fitting the entire lasso or elastic-net regularization path for linear regression, logistic and multinomial regression models, Poisson regression, Cox model, multiple-response Gaussian, and the grouped multinomial regression; see <doi:10.18637/jss.v033.i01> and <doi:10.18637/jss.v039.i05>. There are two new and important additions. The family argument can be a GLM family object, which opens the door to any programmed family (<doi:10.18637/jss.v106.i01>). This comes with a modest computational cost, so when the built-in families suffice, they should be used instead. The other novelty is the relax option, which refits each of the active sets in the path unpenalized. The algorithm uses cyclical coordinate descent in a path-wise fashion, as described in the papers cited.

Last Updated

Sep 10, 2025 at 14:59

License

GPL-2.0-only

Total Downloads

0