DeepLIFT (Deep Learning Important FeaTures)
Algorithms for computing importance scores in deep neural networks.
Implements the methods in "Learning Important Features Through Propagating Activation Differences" by Shrikumar, Greenside & Kundaje, as well as other commonly-used methods such as gradients, guided backprop and integrated gradients. See https://github.com/kundajelab/deeplift for documentation and FAQ.