Marker Enrichment Modeling (MEM)
MEM, Marker Enrichment Modeling, automatically generates and displays quantitative labels for cell populations that have been identified from single-cell data. The input for MEM is a dataset that has pre-clustered or pre-gated populations with cells in rows and features in columns. Labels convey a list of measured features and the features' levels of relative enrichment on each population. MEM can be applied to a wide variety of data types and can compare between MEM labels from flow cytometry, mass cytometry, single cell RNA-seq, and spectral flow cytometry using RMSD.