This library provides an object type which efficiently represents an array of booleans. Bitarrays are sequence types and behave very much like usual lists. Eight bits are represented by one byte in a contiguous block of memory. The user can select between two representations: little-endian and big-endian. All functionality is implemented in C. Methods for accessing the machine representation are provided, including the ability to import and export buffers. This allows creating bitarrays that are mapped to other objects, including memory-mapped files.
+
, *
, +=
, *=
, the in
operator, len()
~
, &
, |
, ^
, <<
, >>
(as well as
their in-place versions &=
, |=
, ^=
, <<=
, >>=
).numpy.ndarray
.frozenbitarray
objects which are hashableUtility module bitarray.util
:
Python wheels are are available on PyPI for all mayor platforms and Python versions. Which means you can simply:
.. code-block:: shell-session
$ pip install bitarray
In addition, conda packages are available (both the default Anaconda repository as well as conda-forge support bitarray):
.. code-block:: shell-session
$ conda install bitarray
Once you have installed the package, you may want to test it:
.. code-block:: shell-session
$ python -c 'import bitarray; bitarray.test()'
bitarray is installed in: /Users/ilan/bitarray/bitarray
bitarray version: 2.7.3
sys.version: 3.11.0 (main, Oct 25 2022) [Clang 14.0.4]
sys.prefix: /Users/ilan/Mini3/envs/py311
pointer size: 64 bit
sizeof(size_t): 8
sizeof(bitarrayobject): 80
__clang__ or __GNUC__ defined: 1
PY_LITTLE_ENDIAN (use word shift): 1
DEBUG: 0
.........................................................................
.........................................................................
................................................................
----------------------------------------------------------------------
Ran 467 tests in 0.460s
OK
The test()
function is part of the API. It will return
a unittest.runner.TextTestResult
object, such that one can verify that
all tests ran successfully by:
.. code-block:: python
import bitarray
assert bitarray.test().wasSuccessful()
As mentioned above, bitarray objects behave very much like lists, so there is not too much to learn. The biggest difference from list objects (except that bitarray are obviously homogeneous) is the ability to access the machine representation of the object. When doing so, the bit endianness is of importance; this issue is explained in detail in the section below. Here, we demonstrate the basic usage of bitarray objects:
.. code-block:: python
>>> from bitarray import bitarray
>>> a = bitarray() # create empty bitarray
>>> a.append(1)
>>> a.extend([1, 0])
>>> a
bitarray('110')
>>> x = bitarray(2 ** 20) # bitarray of length 1048576 (uninitialized)
>>> len(x)
1048576
>>> bitarray('1001 011') # initialize from string (whitespace is ignored)
bitarray('1001011')
>>> lst = [1, 0, False, True, True]
>>> a = bitarray(lst) # initialize from iterable
>>> a
bitarray('10011')
>>> a.count(1)
3
>>> a.remove(0) # removes first occurrence of 0
>>> a
bitarray('1011')
Like lists, bitarray objects support slice assignment and deletion:
.. code-block:: python
>>> a = bitarray(50)
>>> a.setall(0) # set all elements in a to 0
>>> a[11:37:3] = 9 * bitarray('1')
>>> a
bitarray('00000000000100100100100100100100100100000000000000')
>>> del a[12::3]
>>> a
bitarray('0000000000010101010101010101000000000')
>>> a[-6:] = bitarray('10011')
>>> a
bitarray('000000000001010101010101010100010011')
>>> a += bitarray('000111')
>>> a[9:]
bitarray('001010101010101010100010011000111')
In addition, slices can be assigned to booleans, which is easier (and faster) than assigning to a bitarray in which all values are the same:
.. code-block:: python
>>> a = 20 * bitarray('0')
>>> a[1:15:3] = True
>>> a
bitarray('01001001001001000000')
This is easier and faster than:
.. code-block:: python
>>> a = 20 * bitarray('0')
>>> a[1:15:3] = 5 * bitarray('1')
>>> a
bitarray('01001001001001000000')
Note that in the latter we have to create a temporary bitarray whose length must be known or calculated. Another example of assigning slices to Booleans, is setting ranges:
.. code-block:: python
>>> a = bitarray(30)
>>> a[:] = 0 # set all elements to 0 - equivalent to a.setall(0)
>>> a[10:25] = 1 # set elements in range(10, 25) to 1
>>> a
bitarray('000000000011111111111111100000')
Bitarray objects support the bitwise operators ~
, &
, |
, ^
,
<<
, >>
(as well as their in-place versions &=
, |=
, ^=
,
<<=
, >>=
). The behavior is very much what one would expect:
.. code-block:: python
>>> a = bitarray('101110001')
>>> ~a # invert
bitarray('010001110')
>>> b = bitarray('111001011')
>>> a ^ b
bitarray('010111010')
>>> a &= b
>>> a
bitarray('101000001')
>>> a <<= 2 # in-place left shift by 2
>>> a
bitarray('100000100')
>>> b >> 1
bitarray('011100101')
The C language does not specify the behavior of negative shifts and of left shifts larger or equal than the width of the promoted left operand. The exact behavior is compiler/machine specific. This Python bitarray library specifies the behavior as follows:
ValueError
It is worth noting that (regardless of bit endianness) the bitarray left
shift (<<
) always shifts towards lower indices, and the right
shift (>>
) always shifts towards higher indices.
Unless explicitly converting to machine representation, using
the .tobytes()
, .frombytes()
, .tofile()
and .fromfile()
methods, as well as using memoryview
, the bit endianness will have no
effect on any computation, and one can skip this section.
Since bitarrays allows addressing individual bits, where the machine represents 8 bits in one byte, there are two obvious choices for this mapping: little-endian and big-endian.
When dealing with the machine representation of bitarray objects, it is recommended to always explicitly specify the endianness.
By default, bitarrays use big-endian representation:
.. code-block:: python
>>> a = bitarray()
>>> a.endian()
'big'
>>> a.frombytes(b'A')
>>> a
bitarray('01000001')
>>> a[6] = 1
>>> a.tobytes()
b'C'
Big-endian means that the most-significant bit comes first.
Here, a[0]
is the lowest address (index) and most significant bit,
and a[7]
is the highest address and least significant bit.
When creating a new bitarray object, the endianness can always be specified explicitly:
.. code-block:: python
>>> a = bitarray(endian='little')
>>> a.frombytes(b'A')
>>> a
bitarray('10000010')
>>> a.endian()
'little'
Here, the low-bit comes first because little-endian means that increasing
numeric significance corresponds to an increasing address.
So a[0]
is the lowest address and least significant bit,
and a[7]
is the highest address and most significant bit.
The bit endianness is a property of the bitarray object. The endianness cannot be changed once a bitarray object is created. When comparing bitarray objects, the endianness (and hence the machine representation) is irrelevant; what matters is the mapping from indices to bits:
.. code-block:: python
>>> bitarray('11001', endian='big') == bitarray('11001', endian='little')
True
Bitwise operations (|
, ^
, &=
, |=
, ^=
, ~
) are
implemented efficiently using the corresponding byte operations in C, i.e. the
operators act on the machine representation of the bitarray objects.
Therefore, it is not possible to perform bitwise operators on bitarrays
with different endianness.
When converting to and from machine representation, using
the .tobytes()
, .frombytes()
, .tofile()
and .fromfile()
methods, the endianness matters:
.. code-block:: python
>>> a = bitarray(endian='little')
>>> a.frombytes(b'\x01')
>>> a
bitarray('10000000')
>>> b = bitarray(endian='big')
>>> b.frombytes(b'\x80')
>>> b
bitarray('10000000')
>>> a == b
True
>>> a.tobytes() == b.tobytes()
False
As mentioned above, the endianness can not be changed once an object is created. However, you can create a new bitarray with different endianness:
.. code-block:: python
>>> a = bitarray('111000', endian='little')
>>> b = bitarray(a, endian='big')
>>> b
bitarray('111000')
>>> a == b
True
Bitarray objects support the buffer protocol. They can both export their
own buffer, as well as import another object's buffer. To learn more about
this topic, please read buffer protocol <https://github.com/ilanschnell/bitarray/blob/master/doc/buffer.rst>
. There is also an example that shows how
to memory-map a file to a bitarray: mmapped-file.py <https://github.com/ilanschnell/bitarray/blob/master/examples/mmapped-file.py>
The .encode()
method takes a dictionary mapping symbols to bitarrays
and an iterable, and extends the bitarray object with the encoded symbols
found while iterating. For example:
.. code-block:: python
>>> d = {'H':bitarray('111'), 'e':bitarray('0'),
... 'l':bitarray('110'), 'o':bitarray('10')}
...
>>> a = bitarray()
>>> a.encode(d, 'Hello')
>>> a
bitarray('111011011010')
Note that the string 'Hello'
is an iterable, but the symbols are not
limited to characters, in fact any immutable Python object can be a symbol.
Taking the same dictionary, we can apply the .decode()
method which will
return a list of the symbols:
.. code-block:: python
>>> a.decode(d)
['H', 'e', 'l', 'l', 'o']
>>> ''.join(a.decode(d))
'Hello'
Since symbols are not limited to being characters, it is necessary to return
them as elements of a list, rather than simply returning the joined string.
The above dictionary d
can be efficiently constructed using the function
bitarray.util.huffman_code()
. I also wrote Huffman coding in Python
using bitarray <http://ilan.schnell-web.net/prog/huffman/>
__ for more
background information.
When the codes are large, and you have many decode calls, most time will
be spent creating the (same) internal decode tree objects. In this case,
it will be much faster to create a decodetree
object, which can be
passed to bitarray's .decode()
and .iterdecode()
methods, instead
of passing the prefix code dictionary to those methods itself:
.. code-block:: python
>>> from bitarray import bitarray, decodetree
>>> t = decodetree({'a': bitarray('0'), 'b': bitarray('1')})
>>> a = bitarray('0110')
>>> a.decode(t)
['a', 'b', 'b', 'a']
>>> ''.join(a.iterdecode(t))
'abba'
The sole purpose of the immutable decodetree
object is to be passed
to bitarray's .decode()
and .iterdecode()
methods.
A frozenbitarray
object is very similar to the bitarray object.
The difference is that this a frozenbitarray
is immutable, and hashable,
and can therefore be used as a dictionary key:
.. code-block:: python
>>> from bitarray import frozenbitarray
>>> key = frozenbitarray('1100011')
>>> {key: 'some value'}
{frozenbitarray('1100011'): 'some value'}
>>> key[3] = 1
Traceback (most recent call last):
...
TypeError: frozenbitarray is immutable
bitarray version: 2.7.3 -- change log <https://github.com/ilanschnell/bitarray/blob/master/doc/changelog.rst>
__
In the following, item
and value
are usually a single bit -
an integer 0 or 1.
bitarray(initializer=0, /, endian='big', buffer=None)
-> bitarray
Return a new bitarray object whose items are bits initialized from
the optional initial object, and endianness.
The initializer may be of the following types:
int
: Create a bitarray of given integer length. The initial values are
uninitialized.
str
: Create bitarray from a string of 0
and 1
.
iterable
: Create bitarray from iterable or sequence of integers 0 or 1.
Optional keyword arguments:
endian
: Specifies the bit endianness of the created bitarray object.
Allowed values are big
and little
(the default is big
).
The bit endianness effects the buffer representation of the bitarray.
buffer
: Any object which exposes a buffer. When provided, initializer
cannot be present (or has to be None
). The imported buffer may be
readonly or writable, depending on the object type.
New in version 2.3: optional buffer
argument.
all()
-> bool
Return True when all bits in the array are True.
Note that a.all()
is faster than all(a)
.
any()
-> bool
Return True when any bit in the array is True.
Note that a.any()
is faster than any(a)
.
append(item, /)
Append item
to the end of the bitarray.
buffer_info()
-> tuple
Return a tuple containing:
bytereverse(start=0, stop=<end of buffer>, /)
For each byte in byte-range(start, stop) reverse the bit order in-place.
The start and stop indices are given in terms of bytes (not bits).
Also note that this method only changes the buffer; it does not change the
endianness of the bitarray object.
New in version 2.2.5: optional start and stop arguments.
clear()
Remove all items from the bitarray.
New in version 1.4.
copy()
-> bitarray
Return a copy of the bitarray.
count(value=1, start=0, stop=<end of array>, step=1, /)
-> int
Count the number of occurrences of value
in the bitarray.
New in version 1.1.0: optional start and stop arguments.
New in version 2.3.7: optional step argument.
decode(code, /)
-> list
Given a prefix code (a dict mapping symbols to bitarrays, or decodetree
object), decode the content of the bitarray and return it as a list of
symbols.
encode(code, iterable, /)
Given a prefix code (a dict mapping symbols to bitarrays),
iterate over the iterable object with symbols, and extend the bitarray
with the corresponding bitarray for each symbol.
endian()
-> str
Return the bit endianness of the bitarray as a string (little
or big
).
extend(iterable, /)
Append all items from iterable
to the end of the bitarray.
If the iterable is a string, each 0
and 1
are appended as
bits (ignoring whitespace and underscore).
fill()
-> int
Add zeros to the end of the bitarray, such that the length of the bitarray
will be a multiple of 8, and return the number of bits added (0..7).
find(sub_bitarray, start=0, stop=<end of array>, /)
-> int
Return the lowest index where subbitarray is found, such that subbitarray
is contained within [start:stop]
.
Return -1 when sub_bitarray is not found.
New in version 2.1.
frombytes(bytes, /)
Extend the bitarray with raw bytes from a bytes-like object.
Each added byte will add eight bits to the bitarray.
New in version 2.5.0: allow bytes-like argument.
fromfile(f, n=-1, /)
Extend bitarray with up to n bytes read from the file object f.
When n is omitted or negative, reads all data until EOF.
When n is provided and positive but exceeds the data available,
EOFError
is raised (but the available data is still read and appended.
index(sub_bitarray, start=0, stop=<end of array>, /)
-> int
Return the lowest index where subbitarray is found, such that subbitarray
is contained within [start:stop]
.
Raises ValueError
when the sub_bitarray is not present.
insert(index, value, /)
Insert value
into the bitarray before index
.
invert(index=<all bits>, /)
Invert all bits in the array (in-place).
When the optional index
is given, only invert the single bit at index.
New in version 1.5.3: optional index argument.
iterdecode(code, /)
-> iterator
Given a prefix code (a dict mapping symbols to bitarrays, or decodetree
object), decode the content of the bitarray and return an iterator over
the symbols.
itersearch(sub_bitarray, /)
-> iterator
Searches for the given subbitarray in self, and return an iterator over
the start positions where subbitarray matches self.
pack(bytes, /)
Extend the bitarray from a bytes-like object, where each byte corresponds
to a single bit. The byte b'\x00'
maps to bit 0 and all other bytes
map to bit 1.
This method, as well as the .unpack()
method, are meant for efficient
transfer of data between bitarray objects to other Python objects (for
example NumPy's ndarray object) which have a different memory view.
New in version 2.5.0: allow bytes-like argument.
pop(index=-1, /)
-> item
Return the i-th (default last) element and delete it from the bitarray.
Raises IndexError
if index is out of range.
remove(value, /)
Remove the first occurrence of value
in the bitarray.
Raises ValueError
if item is not present.
reverse()
Reverse all bits in the array (in-place).
search(sub_bitarray, limit=<none>, /)
-> list
Searches for the given sub_bitarray in self, and return the list of start
positions.
The optional argument limits the number of search results to the integer
specified. By default, all search results are returned.
setall(value, /)
Set all elements in the bitarray to value
.
Note that a.setall(value)
is equivalent to a[:] = value
.
sort(reverse=False)
Sort the bits in the array (in-place).
to01()
-> str
Return a string containing '0's and '1's, representing the bits in the
bitarray.
tobytes()
-> bytes
Return the bitarray buffer in bytes (pad bits are set to zero).
tofile(f, /)
Write the byte representation of the bitarray to the file object f.
tolist()
-> list
Return bitarray as list of integer items.
a.tolist()
is equal to list(a)
.
Note that the list object being created will require 32 or 64 times more memory (depending on the machine architecture) than the bitarray object, which may cause a memory error if the bitarray is very large.
unpack(zero=b'\x00', one=b'\x01')
-> bytes
Return bytes containing one character for each bit in the bitarray,
using the specified mapping.
Data descriptors were added in version 2.6.
nbytes
-> int
buffer size in bytes
padbits
-> int
number of pad bits
readonly
-> bool
bool indicating whether buffer is read only
frozenbitarray(initializer=0, /, endian='big', buffer=None)
-> frozenbitarray
Return a frozenbitarray
object. Initialized the same way a bitarray
object is initialized. A frozenbitarray
is immutable and hashable,
and may therefore be used as a dictionary key.
New in version 1.1.
decodetree(code, /)
-> decodetree
Given a prefix code (a dict mapping symbols to bitarrays),
create a binary tree object to be passed to .decode()
or .iterdecode()
.
New in version 1.6.
bitarray
module:bits2bytes(n, /)
-> int
Return the number of bytes necessary to store n bits.
get_default_endian()
-> str
Return the default endianness for new bitarray objects being created.
Unless _set_default_endian('little')
was called, the default endianness
is big
.
New in version 1.3.
test(verbosity=1, repeat=1)
-> TextTestResult
Run self-test, and return unittest.runner.TextTestResult object.
bitarray.util
module:This sub-module was added in version 1.2.
zeros(length, /, endian=None)
-> bitarray
Create a bitarray of length, with all values 0, and optional
endianness, which may be 'big', 'little'.
urandom(length, /, endian=None)
-> bitarray
Return a bitarray of length
random bits (uses os.urandom
).
New in version 1.7.
pprint(bitarray, /, stream=None, group=8, indent=4, width=80)
Prints the formatted representation of object on stream
(which defaults
to sys.stdout
). By default, elements are grouped in bytes (8 elements),
and 8 bytes (64 elements) per line.
Non-bitarray objects are printed by the standard library
function pprint.pprint()
.
New in version 1.8.
make_endian(bitarray, /, endian)
-> bitarray
When the endianness of the given bitarray is different from endian
,
return a new bitarray, with endianness endian
and the same elements
as the original bitarray.
Otherwise (endianness is already endian
) the original bitarray is returned
unchanged.
New in version 1.3.
rindex(bitarray, value=1, start=0, stop=<end of array>, /)
-> int
Return the rightmost (highest) index of value
in bitarray.
Raises ValueError
if the value is not present.
New in version 2.3.0: optional start and stop arguments.
strip(bitarray, /, mode='right')
-> bitarray
Return a new bitarray with zeros stripped from left, right or both ends.
Allowed values for mode are the strings: left
, right
, both
count_n(a, n, value=1, /)
-> int
Return lowest index i
for which a[:i].count(value) == n
.
Raises ValueError
when n
exceeds total count (a.count(value)
).
New in version 2.3.6: optional value argument.
parity(a, /)
-> int
Return the parity of bitarray a
.
parity(a)
is equivalent to a.count() % 2
but more efficient.
New in version 1.9.
count_and(a, b, /)
-> int
Return (a & b).count()
in a memory efficient manner,
as no intermediate bitarray object gets created.
count_or(a, b, /)
-> int
Return (a | b).count()
in a memory efficient manner,
as no intermediate bitarray object gets created.
count_xor(a, b, /)
-> int
Return (a ^ b).count()
in a memory efficient manner,
as no intermediate bitarray object gets created.
This is also known as the Hamming distance.
any_and(a, b, /)
-> bool
Efficient implementation of any(a & b)
.
New in version 2.7.
subset(a, b, /)
-> bool
Return True
if bitarray a
is a subset of bitarray b
.
subset(a, b)
is equivalent to a | b == b
(and equally a & b == a
) but
more efficient as no intermediate bitarray object is created and the buffer
iteration is stopped as soon as one mismatch is found.
intervals(bitarray, /)
-> iterator
Compute all uninterrupted intervals of 1s and 0s, and return an
iterator over tuples (value, start, stop)
. The intervals are guaranteed
to be in order, and their size is always non-zero (stop - start > 0
).
New in version 2.7.
ba2hex(bitarray, /)
-> hexstr
Return a string containing the hexadecimal representation of
the bitarray (which has to be multiple of 4 in length).
hex2ba(hexstr, /, endian=None)
-> bitarray
Bitarray of hexadecimal representation. hexstr may contain any number
(including odd numbers) of hex digits (upper or lower case).
ba2base(n, bitarray, /)
-> str
Return a string containing the base n
ASCII representation of
the bitarray. Allowed values for n
are 2, 4, 8, 16, 32 and 64.
The bitarray has to be multiple of length 1, 2, 3, 4, 5 or 6 respectively.
For n=16
(hexadecimal), ba2hex()
will be much faster, as ba2base()
does not take advantage of byte level operations.
For n=32
the RFC 4648 Base32 alphabet is used, and for n=64
the
standard base 64 alphabet is used.
See also: Bitarray representations <https://github.com/ilanschnell/bitarray/blob/master/doc/represent.rst>
__
New in version 1.9.
base2ba(n, asciistr, /, endian=None)
-> bitarray
Bitarray of the base n
ASCII representation.
Allowed values for n
are 2, 4, 8, 16, 32 and 64.
For n=16
(hexadecimal), hex2ba()
will be much faster, as base2ba()
does not take advantage of byte level operations.
For n=32
the RFC 4648 Base32 alphabet is used, and for n=64
the
standard base 64 alphabet is used.
See also: Bitarray representations <https://github.com/ilanschnell/bitarray/blob/master/doc/represent.rst>
__
New in version 1.9.
ba2int(bitarray, /, signed=False)
-> int
Convert the given bitarray to an integer.
The bit-endianness of the bitarray is respected.
signed
indicates whether two's complement is used to represent the integer.
int2ba(int, /, length=None, endian=None, signed=False)
-> bitarray
Convert the given integer to a bitarray (with given endianness,
and no leading (big-endian) / trailing (little-endian) zeros), unless
the length
of the bitarray is provided. An OverflowError
is raised
if the integer is not representable with the given number of bits.
signed
determines whether two's complement is used to represent the integer,
and requires length
to be provided.
serialize(bitarray, /)
-> bytes
Return a serialized representation of the bitarray, which may be passed to
deserialize()
. It efficiently represents the bitarray object (including
its bit-endianness) and is guaranteed not to change in future releases.
See also: Bitarray representations <https://github.com/ilanschnell/bitarray/blob/master/doc/represent.rst>
__
New in version 1.8.
deserialize(bytes, /)
-> bitarray
Return a bitarray given a bytes-like representation such as returned
by serialize()
.
See also: Bitarray representations <https://github.com/ilanschnell/bitarray/blob/master/doc/represent.rst>
__
New in version 1.8.
New in version 2.5.0: allow bytes-like argument.
sc_encode(bitarray, /)
-> bytes
Compress a sparse bitarray and return its binary representation.
This representation is useful for efficiently storing sparse bitarrays.
Use sc_decode()
for decompressing (decoding).
See also: Compression of sparse bitarrays <https://github.com/ilanschnell/bitarray/blob/master/doc/sparse_compression.rst>
__
New in version 2.7.
sc_decode(stream)
-> bitarray
Decompress binary stream (an integer iterator, or bytes-like object) of a
sparse compressed (sc
) bitarray, and return the decoded bitarray.
This function consumes only one bitarray and leaves the remaining stream
untouched. Use sc_encode()
for compressing (encoding).
See also: Compression of sparse bitarrays <https://github.com/ilanschnell/bitarray/blob/master/doc/sparse_compression.rst>
__
New in version 2.7.
vl_encode(bitarray, /)
-> bytes
Return variable length binary representation of bitarray.
This representation is useful for efficiently storing small bitarray
in a binary stream. Use vl_decode()
for decoding.
See also: Variable length bitarray format <https://github.com/ilanschnell/bitarray/blob/master/doc/variable_length.rst>
__
New in version 2.2.
vl_decode(stream, /, endian=None)
-> bitarray
Decode binary stream (an integer iterator, or bytes-like object), and
return the decoded bitarray. This function consumes only one bitarray and
leaves the remaining stream untouched. Use vl_encode()
for encoding.
See also: Variable length bitarray format <https://github.com/ilanschnell/bitarray/blob/master/doc/variable_length.rst>
__
New in version 2.2.
huffman_code(dict, /, endian=None)
-> dict
Given a frequency map, a dictionary mapping symbols to their frequency,
calculate the Huffman code, i.e. a dict mapping those symbols to
bitarrays (with given endianness). Note that the symbols are not limited
to being strings. Symbols may may be any hashable object (such as None
).
canonical_huffman(dict, /)
-> tuple
Given a frequency map, a dictionary mapping symbols to their frequency,
calculate the canonical Huffman code. Returns a tuple containing:
a list of symbols in canonical order
Note: the two lists may be used as input for canonical_decode()
.
See also: Canonical Huffman Coding <https://github.com/ilanschnell/bitarray/blob/master/doc/canonical.rst>
__
New in version 2.5.
canonical_decode(bitarray, count, symbol, /)
-> iterator
Decode bitarray using canonical Huffman decoding tables
where count
is a sequence containing the number of symbols of each length
and symbol
is a sequence of symbols in canonical order.
See also: Canonical Huffman Coding <https://github.com/ilanschnell/bitarray/blob/master/doc/canonical.rst>
__
New in version 2.5.