×

SHAP (SHapley Additive exPlanations) is a unified approach to explain the output of any machine learning model. SHAP connects game theory with local explanations, uniting several previous methods and representing the only possible consistent and locally accurate additive feature attribution method based on expectations.

Uploaded Mon Mar 31 02:28:06 2025
md5 checksum ca7d832198791e4f0a33495af425f670
arch x86_64
build py38h417a72b_0
depends cloudpickle, libgcc-ng >=11.2.0, libstdcxx-ng >=11.2.0, numba, numpy, packaging >20.9, pandas, python >=3.8,<3.9.0a0, scikit-learn, scipy, slicer 0.0.7.*, tqdm >4.25.0
license MIT
license_family MIT
md5 ca7d832198791e4f0a33495af425f670
name shap
platform linux
sha1 46e59cb3b446758c025d2df6cc3605eeb72070e3
sha256 e511a0edfb8553af0a8cc678dd22b65c09b30d92867d4c30cdd6ee77ed589cc9
size 564751
subdir linux-64
timestamp 1668715466551
version 0.41.0