×

SHAP (SHapley Additive exPlanations) is a unified approach to explain the output of any machine learning model. SHAP connects game theory with local explanations, uniting several previous methods and representing the only possible consistent and locally accurate additive feature attribution method based on expectations.

Uploaded Mon Mar 31 02:28:04 2025
md5 checksum d24161987dbcaf8710fe2af9de696c6d
arch x86_64
build py310h1128e8f_0
depends cloudpickle, libgcc-ng >=11.2.0, libstdcxx-ng >=11.2.0, numba, numpy <2.0a0, packaging >20.9, pandas, python >=3.10,<3.11.0a0, scikit-learn, scipy, slicer 0.0.7.*, tqdm >4.25.0
license MIT
license_family MIT
md5 d24161987dbcaf8710fe2af9de696c6d
name shap
platform linux
sha1 7402ae7027570676b87cfa4bc42696b17ec0c443
sha256 0c48daf59c691307b330b8ba4f4a4e517af46d8bcd4824b9c6163e935e9ffe49
size 566761
subdir linux-64
timestamp 1668715327960
version 0.41.0