×

SHAP (SHapley Additive exPlanations) is a unified approach to explain the output of any machine learning model. SHAP connects game theory with local explanations, uniting several previous methods and representing the only possible consistent and locally accurate additive feature attribution method based on expectations.

Uploaded Mon Mar 31 02:28:01 2025
md5 checksum 64577a9a36e93cd2b0ef84532aa30764
arch x86_64
build py39h1128e8f_0
constrains pytorch >=2.0
depends cloudpickle, libgcc-ng >=11.2.0, libstdcxx-ng >=11.2.0, numba, numpy >=1.21.6,<2.0a0, packaging >20.9, pandas, python >=3.9,<3.10.0a0, scikit-learn, scipy, slicer 0.0.8, tqdm >=4.27.0
license MIT
license_family MIT
md5 64577a9a36e93cd2b0ef84532aa30764
name shap
platform linux
sha1 fb87b494abed28309973a6f88ef165ee09020084
sha256 a2cdac96e4027d6d27fa87ec247b771f7040ed975a54f9af04279c6c455e8f28
size 1413696
subdir linux-64
timestamp 1726571180570
version 0.46.0