XGBoost is an optimized distributed gradient boosting library designed to be highly efficient, flexible and portable. It implements machine learning algorithms under the Gradient Boosting framework. XGBoost provides a parallel tree boosting (also known as GBDT, GBM) that solve many data science problems in a fast and accurate way. The same code runs on major distributed environment (Hadoop, SGE, MPI) and can solve problems beyond billions of examples.
Uploaded | Mon Mar 31 01:02:12 2025 |
md5 checksum | 3e700585ea810fa4d40076e2c997785a |
arch | x86_64 |
build | py311h06a4308_0 |
depends | _py-xgboost-mutex 2.0 cpu_0, libxgboost 1.7.6 h6a678d5_0, numpy <2.0a0, python >=3.11,<3.12.0a0, scikit-learn, scipy |
license | Apache-2.0 |
license_family | Apache |
md5 | 3e700585ea810fa4d40076e2c997785a |
name | py-xgboost |
platform | linux |
sha1 | 4ce5bad46fa37ebd849b88d85823dec782374ea0 |
sha256 | 29fbfbe82e4c8c8d4501121cee57d6604cbeaa0cd6a160705ca8a17781b9b9f2 |
size | 303210 |
subdir | linux-64 |
timestamp | 1712794909104 |
version | 1.7.6 |