×

Implements a procedure for forecasting time series data based on an additive model where non-linear trends are fit with yearly, weekly, and daily seasonality, plus holiday effects. It works best with time series that have strong seasonal effects and several seasons of historical data. Prophet is robust to missing data and shifts in the trend, and typically handles outliers well.

Uploaded Mon Mar 31 01:00:09 2025
md5 checksum 7dabbd06d216ea2fc45cf2e32779123e
arch x86_64
build py39h06a4308_0
depends convertdate >=2.1.2, cython >=0.22, holidays >=0.10.2, lunarcalendar >=0.0.9, matplotlib-base >=2.0.0, numpy >=1.21.2,<2.0a0, pandas >=1.0.4, pystan ~=2.19.1.1, python >=3.9,<3.10.0a0, python-dateutil >=2.8.0, setuptools-git >=1.2, tqdm >=4.36.1
license MIT
license_family MIT
md5 7dabbd06d216ea2fc45cf2e32779123e
name prophet
platform linux
sha1 3fc304643d62c24fa1f5e1190360a2876a3c6e9c
sha256 634a033040be35ca73ba774f61c2753827908420a9fd8f303ec0c21a4ae345fe
size 628898
subdir linux-64
timestamp 1646669536273
version 1.0.1