×

Implements a procedure for forecasting time series data based on an additive model where non-linear trends are fit with yearly, weekly, and daily seasonality, plus holiday effects. It works best with time series that have strong seasonal effects and several seasons of historical data. Prophet is robust to missing data and shifts in the trend, and typically handles outliers well.

Uploaded Mon Mar 31 01:00:08 2025
md5 checksum dd043a53682ab36e9ac0890bfbb78ae8
arch x86_64
build py39h3c18c91_0
depends cmdstan, cmdstanpy >=1.0.4, convertdate >=2.1.2, holidays >=0.14.2, importlib_resources, libgcc-ng >=11.2.0, libstdcxx-ng >=11.2.0, lunarcalendar >=0.0.9, matplotlib-base >=2.0.0, numpy >=1.21.5,<2.0a0, pandas >=1.0.4, python >=3.9,<3.10.0a0, python-dateutil >=2.8.0, tbb >=2021.8.0, tqdm >=4.36.1
license MIT
license_family MIT
md5 dd043a53682ab36e9ac0890bfbb78ae8
name prophet
platform linux
sha1 87895bb742a46af63b300a06f45516dec5a644f8
sha256 5d30a68237acb6aaa470f489d608ed6144ccd4ff6de9d8fa57a986ac3d672fe4
size 666276
subdir linux-64
timestamp 1684840641363
version 1.1.3