×

Implements a procedure for forecasting time series data based on an additive model where non-linear trends are fit with yearly, weekly, and daily seasonality, plus holiday effects. It works best with time series that have strong seasonal effects and several seasons of historical data. Prophet is robust to missing data and shifts in the trend, and typically handles outliers well.

Uploaded Mon Mar 31 01:00:07 2025
md5 checksum 6f325e716cf90bbbd162728c03c6ed97
arch x86_64
build py311h4cb112f_0
depends cmdstan, cmdstanpy >=1.0.4, convertdate >=2.1.2, holidays >=0.14.2, importlib_resources, libgcc-ng >=11.2.0, libstdcxx-ng >=11.2.0, lunarcalendar >=0.0.9, matplotlib-base >=2.0.0, numpy >=1.23.5,<2.0a0, pandas >=1.0.4, python >=3.11,<3.12.0a0, python-dateutil >=2.8.0, tbb >=2021.8.0, tqdm >=4.36.1
license MIT
license_family MIT
md5 6f325e716cf90bbbd162728c03c6ed97
name prophet
platform linux
sha1 c3118987a70cff236522e404d9b81701a4ee00f1
sha256 bd50759033a89d85f1b92545561a881259a590a2f88cb62b7123f85f357b77f9
size 705464
subdir linux-64
timestamp 1684840824733
version 1.1.3