×

Implements a procedure for forecasting time series data based on an additive model where non-linear trends are fit with yearly, weekly, and daily seasonality, plus holiday effects. It works best with time series that have strong seasonal effects and several seasons of historical data. Prophet is robust to missing data and shifts in the trend, and typically handles outliers well.

Uploaded Mon Mar 31 01:00:07 2025
md5 checksum 49735ee6c4bcf22c08ace15940cbdc35
arch x86_64
build py310h3c18c91_0
depends cmdstan, cmdstanpy >=1.0.4, convertdate >=2.1.2, holidays >=0.14.2, importlib_resources, libgcc-ng >=11.2.0, libstdcxx-ng >=11.2.0, lunarcalendar >=0.0.9, matplotlib-base >=2.0.0, numpy >=1.21.5,<2.0a0, pandas >=1.0.4, python >=3.10,<3.11.0a0, python-dateutil >=2.8.0, tbb >=2021.8.0, tqdm >=4.36.1
license MIT
license_family MIT
md5 49735ee6c4bcf22c08ace15940cbdc35
name prophet
platform linux
sha1 0b393fb1fd1aa2f1b3f67c2ac5d0d0a34ccffa78
sha256 6a303b912976841830589a643f72f5974ec3e00a014b07bb46d9d933a19762e5
size 666261
subdir linux-64
timestamp 1684840460332
version 1.1.3