×

Implements a procedure for forecasting time series data based on an additive model where non-linear trends are fit with yearly, weekly, and daily seasonality, plus holiday effects. It works best with time series that have strong seasonal effects and several seasons of historical data. Prophet is robust to missing data and shifts in the trend, and typically handles outliers well.

Uploaded Mon Mar 31 01:00:07 2025
md5 checksum 4b46c2c620e714fcf96b6450714f6418
arch x86_64
build py39h3c18c91_0
depends cmdstan, cmdstanpy >=1.0.4, convertdate >=2.1.2, holidays >=0.25.0, importlib_resources, libgcc-ng >=11.2.0, libstdcxx-ng >=11.2.0, lunarcalendar >=0.0.9, matplotlib-base >=2.0.0, numpy >=1.21.5,<2.0a0, pandas >=1.0.4, python >=3.9,<3.10.0a0, python-dateutil >=2.8.0, tbb >=2021.8.0, tqdm >=4.36.1
license MIT
license_family MIT
md5 4b46c2c620e714fcf96b6450714f6418
name prophet
platform linux
sha1 5a7b72bb57d943ab6e67da4e882550f432273361
sha256 496ae0556fcd07476665adc26d675db8261e8c2057fdbf0b3d8914d78e1ca086
size 675484
subdir linux-64
timestamp 1689928410153
version 1.1.4