×

Implements a procedure for forecasting time series data based on an additive model where non-linear trends are fit with yearly, weekly, and daily seasonality, plus holiday effects. It works best with time series that have strong seasonal effects and several seasons of historical data. Prophet is robust to missing data and shifts in the trend, and typically handles outliers well.

Uploaded Mon Mar 31 01:00:06 2025
md5 checksum 93d2ac7cb901f55ede6ffdc1b3ede205
arch x86_64
build py38h3c18c91_0
depends cmdstan, cmdstanpy >=1.0.4, convertdate >=2.1.2, holidays >=0.25.0, importlib_resources, libgcc-ng >=11.2.0, libstdcxx-ng >=11.2.0, lunarcalendar >=0.0.9, matplotlib-base >=2.0.0, numpy >=1.21.5,<2.0a0, pandas >=1.0.4, python >=3.8,<3.9.0a0, python-dateutil >=2.8.0, tbb >=2021.8.0, tqdm >=4.36.1
license MIT
license_family MIT
md5 93d2ac7cb901f55ede6ffdc1b3ede205
name prophet
platform linux
sha1 bf08ee67a7736234a2fd689483a623a1b3df5819
sha256 52551146f6691d39ebb5c0eb94440ccd0bef23525d87a93efafe199deecfbb9f
size 672536
subdir linux-64
timestamp 1697550337076
version 1.1.4