×

Implements a procedure for forecasting time series data based on an additive model where non-linear trends are fit with yearly, weekly, and daily seasonality, plus holiday effects. It works best with time series that have strong seasonal effects and several seasons of historical data. Prophet is robust to missing data and shifts in the trend, and typically handles outliers well.

Uploaded Mon Mar 31 01:00:05 2025
md5 checksum 00e3d70cfe6aa5bf34394d953f45ee54
arch x86_64
build py310h3c18c91_0
depends cmdstan, cmdstanpy >=1.0.4, convertdate >=2.1.2, holidays >=0.25.0, importlib_resources, libgcc-ng >=11.2.0, libstdcxx-ng >=11.2.0, lunarcalendar >=0.0.9, matplotlib-base >=2.0.0, numpy >=1.21.5,<2.0a0, pandas >=1.0.4, python >=3.10,<3.11.0a0, python-dateutil >=2.8.0, tbb >=2021.8.0, tqdm >=4.36.1
license MIT
license_family MIT
md5 00e3d70cfe6aa5bf34394d953f45ee54
name prophet
platform linux
sha1 694dbfa1bd9f691e148bac1b8b14c73ce9b4ecce
sha256 edca3b37a840bc89ead2d58facdfc2ae987cafe6fad312f0bcbd905b454084a9
size 676116
subdir linux-64
timestamp 1689928594173
version 1.1.4