×

Implements a procedure for forecasting time series data based on an additive model where non-linear trends are fit with yearly, weekly, and daily seasonality, plus holiday effects. It works best with time series that have strong seasonal effects and several seasons of historical data. Prophet is robust to missing data and shifts in the trend, and typically handles outliers well.

Uploaded Mon Mar 31 01:00:05 2025
md5 checksum 4899dfc14f31e264e6b765eff0f6c82d
arch x86_64
build py311h4cb112f_0
depends cmdstan, cmdstanpy >=1.0.4, convertdate >=2.1.2, holidays >=0.25.0, importlib_resources, libgcc-ng >=11.2.0, libstdcxx-ng >=11.2.0, lunarcalendar >=0.0.9, matplotlib-base >=2.0.0, numpy >=1.23.5,<2.0a0, pandas >=1.0.4, python >=3.11,<3.12.0a0, python-dateutil >=2.8.0, tbb >=2021.8.0, tqdm >=4.36.1
license MIT
license_family MIT
md5 4899dfc14f31e264e6b765eff0f6c82d
name prophet
platform linux
sha1 85643d13495362d765d80659dce95c8157c02c1f
sha256 2719fd3399676d9a042e69ff2baf3eb77929d7a6b03aca3c6aa67d4c06c107d5
size 714841
subdir linux-64
timestamp 1689928223905
version 1.1.4