×

MLflow is a platform to streamline machine learning development, including tracking experiments, packaging code into reproducible runs, and sharing and deploying models. MLflow offers a set of lightweight APIs that can be used with any existing machine learning application or library (TensorFlow, PyTorch, XGBoost, etc), wherever you currently run ML code (e.g. in notebooks, standalone applications or the cloud).

Uploaded Mon Mar 31 00:03:46 2025
md5 checksum d38202d7a84145f8c291eac11b45f7b2
arch x86_64
build py39h0389eee_0
constrains tensorflow >=2.10.0, lightning>=1.8.1, tiktoken <1, fastai >=2.4.1, boto3 >=1.28.56,<2, boto3 >1, mlflow-skinny <0a0, spacy >=3.3.0, mlserver >=1.2.0, !=1.3.1, <1.4.0, openai <1.0, pytorch >=1.11.0, aiohttp <4, holidays !=0.25, mxnet !=1.8.0, onnx >=1.11.0, shap >=0.42.1, azure-storage-file-datalake >12, torchvision >=0.12.0, pydantic >=1.0,<3, xgboost >=0.82, fastapi <1, google-cloud-storage >=1.30.0, watchfiles <1, mlserver-mlflow >=1.2.0,!=1.3.1,<1.4.0, slowapi >=0.1.9,<1, azureml-core >=1.2.0, uvicorn-standard <1
depends alembic <2,!=1.10.0, click >=7.0,<9, cloudpickle <4, docker-py >=4.0.0,<8, entrypoints <1, flask <4, gitpython >=3.1.9,<4, graphene <4, gunicorn <23, importlib-metadata <8,>=3.7.0,!=4.7.0, jinja2 <4,>=2.11, markdown >=3.3,<4, matplotlib-base <4, numpy <2, packaging <25, pandas <3, protobuf >=3.12.0,<5, pyarrow <16,>=4.0.0, python >=3.9,<3.10.0a0, pytz <2025, pyyaml >=5.1,<7, querystring_parser <2, requests >=2.17.3,<3, scikit-learn <2, scipy <2, sqlalchemy >=1.4.0,<3, sqlparse >=0.4.0,<1
license Apache-2.0
license_family APACHE
md5 d38202d7a84145f8c291eac11b45f7b2
name mlflow
platform linux
sha1 433c3a97adbb018d9fd38f6bb11811273a8580cd
sha256 2f66af4963822e8d680f71726f6631f7a701ff24f7f2a0ac4832389e9a294b27
size 5121795
subdir linux-64
timestamp 1715898195237
version 2.12.2