×

MLflow is a platform to streamline machine learning development, including tracking experiments, packaging code into reproducible runs, and sharing and deploying models. MLflow offers a set of lightweight APIs that can be used with any existing machine learning application or library (TensorFlow, PyTorch, XGBoost, etc), wherever you currently run ML code (e.g. in notebooks, standalone applications or the cloud).

Uploaded Mon Mar 31 00:03:45 2025
md5 checksum 43975c20f05332e1cdebcbb67ee2c16a
arch x86_64
build py38h0389eee_0
constrains tensorflow >=2.10.0, lightning>=1.8.1, tiktoken <1, fastai >=2.4.1, boto3 >=1.28.56,<2, boto3 >1, mlflow-skinny <0a0, spacy >=3.3.0, mlserver >=1.2.0, !=1.3.1, <1.4.0, openai <1.0, pytorch >=1.11.0, aiohttp <4, holidays !=0.25, mxnet !=1.8.0, onnx >=1.11.0, shap >=0.42.1, azure-storage-file-datalake >12, torchvision >=0.12.0, pydantic >=1.0,<3, xgboost >=0.82, fastapi <1, google-cloud-storage >=1.30.0, watchfiles <1, mlserver-mlflow >=1.2.0,!=1.3.1,<1.4.0, slowapi >=0.1.9,<1, azureml-core >=1.2.0, uvicorn-standard <1
depends alembic <2,!=1.10.0, click >=7.0,<9, cloudpickle <4, docker-py >=4.0.0,<8, entrypoints <1, flask <4, gitpython >=3.1.9,<4, graphene <4, gunicorn <23, importlib-metadata <8,>=3.7.0,!=4.7.0, jinja2 <4,>=2.11, markdown >=3.3,<4, matplotlib-base <4, numpy <2, packaging <25, pandas <3, protobuf >=3.12.0,<5, pyarrow <16,>=4.0.0, python >=3.8,<3.9.0a0, pytz <2025, pyyaml >=5.1,<7, querystring_parser <2, requests >=2.17.3,<3, scikit-learn <2, scipy <2, sqlalchemy >=1.4.0,<3, sqlparse >=0.4.0,<1
license Apache-2.0
license_family APACHE
md5 43975c20f05332e1cdebcbb67ee2c16a
name mlflow
platform linux
sha1 89db26afb43027cfd49b1f1fc4cb776f4c45cd77
sha256 9d94a098f058b90df446bf66485389129f27d2ff67f3d4c1bd9b275a0eea81e6
size 5123289
subdir linux-64
timestamp 1715898124450
version 2.12.2